Датчики температуры

  • автор:

Биметаллические термореле компании Ани-Электроника для широкого применения

статье приводится информация о принципах работы термореле и дается обзор устройств этого типа, выпускаемых компанией «Ани-Электроника».

Введение

Приведем некоторые теоретические сведения, связанные с физическим принципом работы термореле.

Теплообмен — это самопроизвольный необратимый процесс переноса теплоты, обусловленный неоднородным полем температуры. Различают три вида теплообмена (теплопроводность, конвекция и лучистый теплообмен). На практике теплообмен обычно осуществляется всеми тремя видами сразу. Теплообмен определяет многие процессы в природе, а также в технике и в быту.

Теплопередача — это теплообмен между двумя теплоносителями через разделяющую их твердую стенку или через поверхность раздела между ними. Теплопередача включает в себя теплоотдачу более горячего тела к стенке, теплопроводность в стенке, теплоотдачу от стенки к более холодному телу.

Тепловой поток — это количество теплоты, переданное через изотермическую поверхность в единицу времени. Тепловой поток, отнесенный к единице поверхности, называется плотностью теплового потока или тепловой нагрузкой (обозначается обычно q). Плотность теплового потока — вектор, численно равный количеству теплоты, передаваемой в единицу времени через единицу площади.

Теплопроводность — это один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При теплопроводности перенос энергии в теле осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, к частицам с меньшей энергией. Если относительное изменение температуры на расстоянии средней длины пробега частиц мало, то выполняется основной закон теплообмена (закон Фурье): плотность теплового потока q пропорциональна градиенту температуры grad T, то есть:

где λ — коэффициент, зависящий только от агрегатного состояния вещества, его атомномолекулярного строения, температуры, давления и состава; grad T — градиент температуры (вектор, показывающий направление наискорейшего изменения температуры, значение которой меняется от одной точки пространства к другой).

Таким образом, косвенным показателем, характеризующим тепловой поток, является температура. Контролируя ее, можно делать вывод о тепловых потоках. При этом следует обратить внимание на то, что в выражении (1) содержится информация о градиенте, то есть о пути движения тепловых потоков. Из этого следует, что, зная температуру и путь движения, можно сделать выводы о тепловых потоках. Вместе с тем градиент характеризует наикратчайший путь изменения температуры. Следовательно, необходима информация о скорости изменения теплового потока.

Конвекция — это перенос теплоты в жидкостях, газах или сыпучих средах потоками вещества. Различают естественную, или свободную, и вынужденную конвекцию.

Естественная конвекция возникает при неравномерном нагреве (нагреве снизу) текучих или сыпучих веществ. Конвекция приводит к выравниванию температуры вещества. При вынужденной конвекции перемещение вещества происходит главным образом под воздействием какого-либо устройства (насоса, мешалки, фена и т. п.). Интенсивность переноса теплоты зависит не только от перечисленных выше факторов, но и от скорости вынужденного движения вещества. Поэтому и здесь без скорости — в нашем случае без времени нарастания температуры — не обойтись.

Лучистый (или радиационный) теплообмен осуществляется в результате процессов превращения внутренней энергии вещества в энергию излучения, переноса энергии излучения и ее поглощения веществом. Согласно закону Стефана — Больцмана, тепловой поток пропорционален 4-й степени температуры по Кельвину! Это сильная зависимость от температуры. Энергия передается электромагнитным излучением, поэтому передача происходит практически мгновенно. И так как речь идет о 4-й степени температуры, то значение лучистой энергии хорошо (сильно) сказывается при больших температурах. Примером может служить Солнце.

В самом простом и частном случае, если тело, нагретое до температуры Т, помещено в среду, температура которой отлична от Т, то при известных условиях можно считать, что приращение температуры dТ за малый промежуток времени dτ с достаточной точностью выражается формулой:

где k — постоянный коэффициент, зависящий от материала тела и среды.

Решая уравнение (2), получаем, что закон изменения температуры от времени имеет экспоненциальный вид:

где с — постоянный коэффициент, зависящий от материала тела и среды.

Из всего этого видно, что контролировать тепловые потоки можно, учитывая:

  • направление тепловых потоков;
  • величину температуры Т;
  • зависимость изменения температуры от времени.

Принцип работы биметаллических термореле

Биметаллические реле просто и достаточно точно превращают изменения тепловых потоков в механическую энергию, коммутируя тем самым электрические цепи. На сегодняшний день они являются одними из наиболее эффективных средств контроля и управления теплообменом. Преобразование тепловой энергии в механическую в таких реле осуществляется с помощью пластины или диска, выполненных из биметалла. Их действие основано на использовании разности линейного расширения двух разнородных металлов, приводящего к изгибу пластины и, как следствие, к замыканию или размыканию контактов.

Конструктивное исполнение

Наибольшее распространение получила такая конструкция биметаллических термореле: на нижнем торце корпуса в виде цилиндра, изготовленного из термостойкой пластмассы, находится металлическая термочувствительная площадка и прижимной кронштейн (с двумя отверстиями под винты или шурупы) для крепления термореле к точке контроля температуры, а на другом торце — выводы лепестков для соединения с коммутируемыми цепями. Одно из требований к установке термореле — обеспечение надежного контакта поверхностей объекта контроля и внешней термочувствительной площадки. Это очень важно, так как существует вероятность прогиба площадки при сильном прижатии, приводящего к изменению расстояния от нее до биметаллического диска, что может привести к нестабильной работе термореле. В свою очередь, плохое прижатие приведет к плохой теплопередаче, что влияет на скорость срабатывания термореле. Существуют и другие конструкции, отличные от приведенной, например:

  • выводы выполнены не в виде лепестков, а в виде гибких проводов;
  • крепление осуществляется не через прижимной кронштейн, а резьбой (М4–М10);
  • открытый корпус;
  • регулируемые, с рукояткой для установки температуры срабатывания.

Возврат в исходное состояние

По типу возврата в исходное состояние биметаллические термореле подразделяются на терморегуляторы (с самовозвратом или бескнопочные) и термоограничители (без самовозврата или с ручным возвратом, то есть кнопочные).

Терморегуляторы — это чувствительные к температуре устройства, которые поддерживают температуру прибора в определенных пределах путем автоматического отключения или включения цепи. В исходное положение терморегулятор возвращается самостоятельно после понижения температуры.

Термоограничители — устройства, чувствительные к температуре, которые размыкают цепь при достижении в приборе заданного значения температуры. В исходное состояние термоограничитель возвращается нажатием кнопки.

Виды срабатывания контактов

Реле могут быть замыкающими и размыкающими. Размыкающий контакт — это контакт, который при воздействии повышенной температуры на чувствительный элемент размыкается, то есть в обычном состоянии замкнут (нормально замкнутый контакт). Замыкающий контакт — наоборот, при повышении температуры до заданной замыкается, следовательно, в обычном состоянии контакт разомкнут (нормально разомкнутый контакт).

Основные области применения

К областям наиболее широкого применения биметаллических реле относятся: электронагреватели, радиаторы, электро- и газовые котлы, электрические плиты и термосы, пылесосы, фены, калориферы, теплообменники, тепловые завесы, обогреватели сидений и т. д. Вместе с тем биметаллические термореле используются не только в зонах нагрева, но и в зонах хранения (до 20 °С, то есть в овощехранилищах, на птицефабриках, в теплицах, термокожухах камер видеонаблюдения) — то есть практически везде, где требуется дискретное регулирование температуры или аварийный контроль ее состояния. Например, в газовых котлах используются терморегуляторы (в качестве датчиков тяги и датчиков перегрева, настроенные соответственно на 80 и 95 °С), имеющие функцию аварийного отключения подачи тепла. В накопительных водонагревателях аккумуляционного типа используются терморегуляторы, настроенные на отключение при температуре 50 °С и включение при температуре 40 °С. Их назначение — поддержание температуры в требуемом диапазоне (термостатирование).

Основные функциональные параметры и характеристики

Термореле характеризуются следующими основными параметрами.

Температура срабатывания — значение температуры, при достижении которой происходит срабатывание исполнительного элемента. Размыкающий контакт размыкается, замыкающий — замыкается. В зависимости от типа биметаллического термореле температура срабатывания находится в диапазоне от –35 до +420 °С. Как правило, значение температуры срабатывания выбирается из ряда, имеющего дискретность 5 °С.

Температура возврата — температура, при которой происходит возврат исполнительного элемента в исходное состояние при снижении температуры чувствительного элемента. При этом размыкающий контакт замыкает, а замыкающий — размыкает цепь.

Гистерезис — разность между температурой срабатывания и температурой возврата.

Температура срабатывания всегда выше температуры возврата. То есть срабатывание происходит при подъеме температуры, и наоборот, возврат — при понижении температуры.

Термореле, настроенное на температуру срабатывания ниже комнатной, скажем, 0 °С, при нормальной температуре будет находиться в состоянии срабатывания. При снижении температуры до температуры возврата происходит переход терморегулятора в нормальное состояние.

Погрешность температуры срабатывания — величина отклонения, выраженная в процентах от номинального значения. Как правило, это значение выбирается из следующего ряда: ±3% , ±6%, ±10%.

Время срабатывания — это время, за которое происходит коммутация электрической цепи после достижения термореле температуры срабатывания с момента внезапного перемещения выключателя из среды с температурой 20–50 °С в среду с реальной температурой срабатывания выключателя.

Коммутируемый ток и напряжение — как правило, нормируются значения переменного тока и напряжения, например 16 А, 220 В.

Вид и значение коммутируемого тока и напряжения существенно сказывается на параметрах надежности изделий. Так, при коммутации переменного тока и напряжения с значениями соответственно 16 А и 220 В число циклов срабатывания составляет 30 тыс., а при токе 1–3 А — 100 тыс.

Переходное сопротивление — не более 50 мОм. В ряде случаев требуются меньшие значения переходного сопротивления. Например, коммутируются напряжения низкого уровня от термопар с токами меньше 1,5 А, что характерно для использования термореле в газовых котлах и газовых колонках. В этом случае требуются изделия с переходным сопротивлением 20 мОм и менее.

Понятие о температурных регуляторах

Изделия этой категории применяют для решения разных задач. По соответствующей настройке температурного порога подают питание (отключают):

  • отопление в погребе;
  • нагрев паяльной станции;
  • циркуляционный насос котла.

Из приведенных примеров понятны базовые требования к точности, которую должна обеспечить подходящая схема терморегулятора. В некоторых ситуациях необходимо поддержание заданного уровня не ниже, чем ±1C°. Для контроля рабочих параметров нужна оперативная индикация. Существенное значение имеют нагрузочные способности.

Перечисленные особенности поясняют назначение типовых функциональных узлов:

  • значение температуры фиксируют специализированным датчиком (резистором, термопарой);
  • показания анализирует микроконтроллер или другое устройство;
  • исполнительный сигнал поступает на электронный (механический) переключатель.

К сведению. Кроме рассмотренных частей, схема термореле может содержать дополнительные компоненты для подачи питания на электронагреватель, другую мощную нагрузку.

Принцип работы

Любая схема термостата действует на одинаковых принципах. Информация о температуре сравнивается с установленным значением. Пересечение определенного уровня активизирует исполнительное устройство для коррекции контролируемого параметра нужным образом.

Необходимые материалы и инструменты

В некоторых ситуациях понадобятся навыки изготовления сложной печатной платы. Простейшие схемы собирают за несколько минут с применением паяльника и технологии навесного монтажа. До выполнения рабочих операций необходимо приобрести:

  • комплектующие детали;
  • расходные материалы;
  • измерительную аппаратуру.

Список покупок составляют на основе выбранной электрической схемы. Для защиты устройства от неблагоприятных внешних воздействий и улучшения внешнего вида создают соответствующий корпус.

Достоинства и недостатки

Плюсы и минусы отдельных схем оценивают с учетом реальных условий эксплуатации. Иногда выгодно затратить время и деньги на стадии реализации идеи с целью продления срока службы готового изделия. Нет смысла создавать самоделку, если фабричный аналог с официальными гарантиями стоит дешевле.

Как грамотно установить

Чтобы продлить срок службы терморегулятора, пользуются следующими рекомендациями:

  • не устанавливают электронику без дополнительной защиты на открытом воздухе, в помещениях с повышенным уровнем влажности;
  • при необходимости в неблагоприятную среду выносят контрольный датчик;
  • исключают расположение регулятора напротив тепловых пушек, других «генераторов» холода или тепла;
  • для повышения точности выбирают место без активных конвекционных потоков.

Как отремонтировать

Самодельный термодатчик своими руками восстановить нетрудно, так как известна технология проверки (настройки). Инструкции по ремонту фабричных изделий можно найти на официальном сайте производителя.

Выбор термореле в зависимости от скорости изменения температуры

Для выбора типа биметаллического термореле в зависимости от скорости изменения температуры среды, как правило, используют один из двух путей:

  • Потребитель сам решает задачу в соответствии с уравнением теплового баланса, то есть теоретически по формулам производит расчет и сообщает изготовителю термореле информацию о скорости изменения температуры в месте предполагаемого крепления требуемого изделия.
  • Потребитель не углубляется в теорию, а на основе практических знаний формирует требования к диапазону температур и предоставляет их изготовителю термореле. На основании этих требований изготовитель поставляет несколько типов термореле с небольшим, заранее оговоренным разбросом параметров (по температуре и скорости срабатывания). После этого потребитель опытным путем, меняя место закрепления относительно точки нагрева, находит наиболее приемлемый вариант. Следует учитывать, что чаще всего скорость срабатывания термореле разных производителей отличается, и при смене изделия на продукцию иного производителя нередко трудно добиться повторяемости результатов.

Биметаллические термореле фирмы «Ани-Электроника»

В числе рассматриваемой продукции широкое распространение получили биметаллические термореле, производимые ЗАО «Ани-Электроника». Основные параметры данных изделий представлены в таблице.

Таблица. Основные параметры термореле ЗАО «Ани-Электроника»

Обозначение терморегуляторов «Ани-Электроника» определяется в соответствии со схемой, приведенной на рисунке.

Рисунок. Обозначение терморегуляторов «Ани-Электроника»: а — терморегуляторы; б — термоограничители

Пример обозначения терморегулятора ТК20 конструктивного исполнения 01, имеющего: вид контактов размыкающий — 1, температура срабатывания — 120 °С, погрешность срабатывания ±6%, температура возврата — 100 °С: ТК20-01-1-120 °С ±6% –100 °С.

Пример обозначения термоограничителя ТК30 конструктивного исполнения 02 со следующими характеристиками: вид контактов размыкающий — 1, температура срабатывания — 100 °С, погрешность срабатывания — ±3%: ТК30-02-1-100 °С ±3%.

Конкретные значения температуры срабатывания и возврата, значения требуемой погрешности, конструктивное исполнение, а также тип контактов могут быть скорректированы в пределах указанных температурных диапазонов по требованию заказчика.

Если потребитель не знает, какой тип термореле фирмы «Ани-Электроника» ему требуется, целесообразно определиться по следующим вопросам и представить ответы на них их поставщику:

  • требуется ли термореле с самовозвратом (кнопочное);
  • необходимо ли термореле с возможностью для потребителя регулирования температуры срабатывания;
  • вид напряжения коммутации и его максимальное, номинальное, минимальное значение;
  • максимальное, номинальное, минимальное значение коммутируемого тока;
  • переходное сопротивление (мОм);
  • тип контакта (размыкающий или замыкающий);
  • температура срабатывания;
  • температура возврата;
  • относительная погрешность;
  • конструктивное исполнение (с крепежным хомутом; с лепестками; с лепестками, согнутыми под углом 90°; без лепестков с проводами; длина и тип провода; с резьбовым хвостом; размер резьбы);
  • степень защиты оболочки;
  • окружающая среда, климатические воздействия, механические воздействия.

Все изделия из таблицы, кроме ТКР-1, 2, 3 и 4, не позволяют осуществлять регулировку температур срабатывания потребителем.

Изделия типов ТКР-1, 2, 3 и 4, ТК-100 и ТК-40 предназначены для работы в нормально загрязненной среде. Остальные — для работы в сильно загрязненной среде.

Вид климатического исполнения всех приборов — УХЛ4.

Скачать статью в формате PDF

Другие статьи по данной теме:

  • Анализ спроса на электронные компоненты в 2012 году
  • Теоретические аспекты конечно-элементного моделирования состояний и функциональности магнитоуправляемых датчиков. Часть 2
  • Современные программные средства связи микроконтроллера с компьютером по интерфейсу RS-232. Часть 4
  • TruStability — датчики давления номер один по стабильности
  • Новые тенденции и перспективные технологии автомобильных датчиков систем Powertrain и контроля эмиссии. Часть 2. О датчиках температуры и обо всех остальных
  • Термокомпенсированные датчики влажности и температуры с цифровым выходом компании Honeywell
  • Перспективные кварцевые пьезорезонансные датчики давления
  • Емкостные промышленные датчики уровня. Проблемы выбора и практика применения

Сообщить об ошибке

Если Вы заметили какие-либо неточности в статье (отсутствующие рисунки, таблицы, недостоверную информацию и т.п.), просьба сообщить нам об этом. Пожалуйста укажите ссылку на страницу и описание проблемы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *