Расход электроэнергии инфракрасными пленочными теплыми полами

  • автор:

Расчет энергопотребления пленочного инфракрасного теплого пола

Рассчитать затраты на электроэнергию для работы инфракрасного теплого пола достаточно просто. Правда, тут следует учитывать будущий режим работы системы обогрева пола: круглосуточный или принудительный. В первом случае расходы будут выше, но таким режимом пользуется всего 1 из каждых 5-ти домовладельцев, установивших инфракрасный теплый пол. Дело в том, что большинство из нас основную часть дня проводит на работе, дети – в школе, поэтому поддерживать комфортную температуру в пустой квартире вовсе необязательно.

А теперь перейдем непосредственно к расчетам. Итак, у нас есть комната стандартного размера – 20 кв. м, в которой следует произвести монтаж пленочного теплого пола. По правилам укладки инфракрасной системы обогрева нет необходимости класть термопленку по всей площади комнаты (в среднем, достаточно 50%). К тому же, пленочный теплый пол не должен располагаться под мебелью (это нецелесообразно экономически и не очень «приятно» для самой мебели).

Итак, мы определили, что пленочный теплый пол будет занимать половину комнаты, то есть 10 кв.м. Вместе с инфракрасным полом устанавливается терморегулятор, который может снизить энергозатраты до 35% от заявленной мощности пленочного теплого пола. Таким образом, коэффициент энергопотребления будет составлять 0,35. Один квадратный метр инфракрасного теплого пола имеет мощность в 220 Вт/ч. Считаем энергопотребление:

(10 кв.м х 220 Вт/ч) х 0,35 = 770 Вт/ч

Стоимость 1 кВт электроэнергии в Москве составляет 5,00 рубля. Рассчитываем теперь, во сколько нам будет обходиться эксплуатация инфракрасного теплого пола:

(770 Вт/ч х 5,00 руб) : 1000 Вт = 3,85 руб/час

Как показывает опыт, работа теплого пола у большинства домовладельцев занимает не более 5 часов в сутки. Это значит, что ежесуточные затраты составляют 19,25 руб. В месяц выйдет где-то 580 рублей (уже с учетом выходных дней, когда теплый пол может функционировать дольше).

Что может повлиять на теплоотдачу?

Для начала хотелось бы остановиться на том, каким же должен быть правильный и качественный теплый пол, независимо от того, на каком теплоносителе – электричестве или воде – он будет работать. Итак, система такого подогрева будет работать по-разному в зависимости от толщины основания или качества теплоизолятора, а значит, все эти моменты нужно учитывать. Считается, что толщина теплоизоляционного материала не должна быть более 3 см, при этом материал лучше приобретать с отражающим слоем – так сохранить тепло внутри помещения будет проще.

Совет! В качестве теплоизолятора советуют приобретать пенополистирол плотностью около 35 кг/м3.

Теплый пол своими руками

Толщина бетонной стяжки должна составлять около 4-10 см, особенно если речь идет об укладке кабельного или водяного пола. Внутри она имеет усиление армирующей сеткой, на которую, кстати, и могут закрепляться теплоносители. За счет этого тепло будет перераспределяться лучше. В случае если планируется обустройство водяного пола, рекомендуется приобретать трубы, изготовленные из металлопластика либо из сшитого полиэтилена диаметром 16-20 мм – с ними проще всего наделить систему оптимальной мощностью, достаточной для прогрева комнат.

Схема теплого пола под стяжку

Труба для теплого пола

Расчет тепловых потерь

Обычно системы теплого пола оснований не выступают в качестве единственного источника обогрева помещений, однако некоторые именно так и планируют отапливать дом. Но перед принятием этого инженерного решения важно убедиться, можно ли вообще конкретное помещение обогреть только таким образом.

Электрический теплый пол

Если в период использования системы потери тепла не превышают 100 Вт/м2, то системы подогрева полов будет вполне достаточно для прогрева комнаты. Однако произвести расчеты, чтобы получить нужные данные, самостоятельно довольно сложно, так как используются сложные формулы. Так что рекомендуется воспользоваться онлайн-калькулятором расчета тепловых потерь помещения. В случае если потери тепла выходят больше 100 Вт/м2, то теплоизоляцию помещения нужно улучшать либо обустраивать дополнительную систему обогрева.

Расчет для разных типов помещений

В каждом помещении, в зависимости от его особенностей, требуется различная мощность подогрева пола. Наибольшей она должна быть в прохладных комнатах, а также на лоджии или балконе. В таком помещении мощность не может быть менее 180 Вт/м2. В ванной или санузле – не менее 140 Вт/м2 из-за высоких показателей влажности.

На заметку! Мощность системы теплого пола не может быть невысокой, если под обустраиваемой комнатой находятся не отапливаемые помещения.

Что касается электрического пола, в этом случае минимальная мощность должна быть равна 120 Вт/м2.

Электрический теплый пол под плитку

Таблица. Мощность системы подогрева пола в случае использования ее как дополнительного источника тепла.

Помещение Мощность, Вт/м кв.
Балкон и лоджия 180
Ванная, санузел 140-150
Жилые комнаты и кухня, расположенные на 2 и выше этажах 120-130
Жилые комнаты и кухня, расположенные на 1 этаже 140-150

Как рассчитать тёплый водяной пол

Посмотрим, сколько материалов потребуется для обустройства в помещении водяной системы подогрева. Расчет количества труб на 1 м2 в этом случае производится так: необходимо узнать, сколько составят теплопотери в помещении. Их проще всего определить с помощью онлайн-калькулятора, в который вносятся данные о самом строении, а также о погодных условиях на улице. Пусть они будут равны 80 Вт/м2. Площадь квартиры, где будет обустраиваться система теплого пола, возьмем равную 80 м2. В итоге общие теплопотери можно узнать, перемножив два значения 80х80 = 6400 Вт. Именно это значение придется компенсировать при помощи всех систем обогрева с запасом мощности до 20%.

Водяной теплый пол

Таблица. Расчет трубы в зависимости от шага петли.

Шаг, см Расход, м п./1 м кв.
10 10
15 6,7
20 5
25 4
30 3,4

Обычно расстояние между водоводами выдерживается около 15 см при сечении трубы 16 мм. Тогда мощность 1 м2 пола составит около 100 Вт. Поделив общую площадь помещения на размер шага, получаем: 80/0,15 = 533 м. Именно столько метров трубы и потребуется для обустройства системы водяного подогрева в этой квартире. Примерно так же вычисляется и длина каждого контура.

Внимание! Около стен помещения, примыкающих к улице, шаг будет несколько меньше (10 см). С учетом этого и рассчитывается метраж водовода.

В строительных магазинах в продаже имеются трубы уже определенной длины – от 50 до 240 м. Они смотаны в бухты. А для присоединения к коллектору всей системы придется купить водоводы большего диаметра.

Калькулятор длины контура труб теплого пола

Внесите запрашиваемые данные и нажмите кнопку «Рассчитать длину контура» Площадь, на которой будет производиться укладка контура, м² Выбранный шаг укладки контура, мм

Как рассчитать мощность насоса для теплого пола

Системы отопления, в большинстве случаев, работают в паре с циркуляционными насосами. Они не способны создавать избыточное давление и используются для проталкивания теплоносителя на определенной скорости.

В связи с тем, что потребность в температуре может меняться в зависимости от погоды, то и в скорость движения теплоносителя необходимо вносить определенные коррективы. Из-за этого следует устанавливать трехскоростные насосы с возможностью регулировки.

Перед покупкой агрегата для теплых полов в квартире следует определиться с несколькими важными параметрами: напором и мощностью. Если роль теплоносителя будет играть вода, то для расчета мощности насоса используют такую формулу:

Q=0,86*Ph/(t пр.т-t обр.т)

    где:

  • Ph – это мощность отопительного контура;
  • t обр. т – температура воды в обратном направлении;
  • t пр.т – температура подачи.

До полученного результата следует прибавить еще 15 % на то случай, если в регионе будут аномальные холода.

Таблица характеристик для выбора насоса

Второй характеристикой мотора является создаваемый им напор. Он обязательно необходим для преодоления сопротивления фитингов, труб и других элементов трубопровода. В любом случае гидравлическое сопротивление трубы будет зависеть от материала, из которого она изготовлена.

При расчете следует обратить внимание на сопротивление в области вентиля, фитингов и смесительного узла. Для расчета напора используют следующую формулу:

H=(П*L+ƩK)/(1000)

    где:

  • H – это напор насоса;
  • П – гидравлическое сопротивление одного погонного метра трубопровода;
  • – длина наиболее протяженного контура трубопровода;
  • K – показатель запаса мощности.

При расчете напора необходимо умножить длину контура на сопротивление одного метра трубопровода. Полученное значение измеряется в кПа. В дальнейшем его нужно перевести в атмосферы, используя соотношение: 100 кПа=0,1 атм.

Гарантия

Гарантийный срок на тёплый пол зависит от разновидности:

  • инфракрасный плёночный – 15 лет;
  • инфракрасный стержневой – 20 лет;
  • термоматы – 20 лет;
  • кабель – 20 лет.

Гарантия действует если причиной выхода из строя конкретного сегмента конструкции или целой системы послужила изначальная неисправность – заводской брак.

Гарантия действует при нарушении функционирования тёплого пола уже в процессе эксплуатации за исключением следующих случаев:

  1. На материале есть следы механического повреждения в результате нарушения условий транспортировки, установки, хранения.
  2. Причиной перегорания стало механическое или химическое воздействие на материал.
  3. Источник тепла использовался без применения терморегулятора.
  4. Система использовалась не по прямому назначению.
  5. Нагревательные элементы вышли из строя в связи с аварией в бытовых условиях (залив водой, перепад напряжения).
  6. Нарушены правила установки и использования, описанные в инструкции к тёплому полу.
  7. Обогрев подключался к сети электропитания с нарушением правил, указанных в документации (сила тока и напряжение в сети выше, чем в инструкции к тёплому полу).
  8. Электрическая конструкция устанавливалась поблизости с источниками высокой температуры.
  9. Выход из строя вызван непреодолимыми природными и техногенными явлениями (удар молнией, пожар).

При соблюдении гарантийных условий компания-производитель заменяет вышедшую из строя секцию или систему в зависимости от разновидности тёплого пола. Фирма не берёт на себя расходы, связанные с доставкой материала.

Для замены в соответствии с условиями гарантии предоставляется перечень документов:

  • заполненный по правилам гарантийный талон (оригинал);
  • документ о покупке материала с указанной датой (в противном случае исчисление гарантийного срока начнётся с момента завершения производства);
  • фотографии, удостоверяющие эксплуатацию тёплого пола в соответствии с требованиями, указанными в инструкции;
  • при отсутствии фотографий возможен вызов специалистов, которые засвидетельствуют выполнение данных требований.

Неисправности и ремонт

В электрическом тёплом полу неисправности связаны с тремя проблемными деталями:

  • регулятор температуры;
  • датчик температуры;
  • нагревательный элемент.

Ремонт конструкции начинается с определения источника неисправности. В случае предварительного проведения ремонтных работ причина обычно заключается в выходе из строя нагревательного элемента из-за использования строительных инструментов.

Если изначально причины поломки неизвестны, требуется измерить напряжение питания. Эти параметры указываются в техническом паспорте. Максимальное отклонение от данных, указанных в паспорте, не должно превышать 5%.

При проверке датчика температуры показатели должны быть в пределах 5-30 кОм (точные параметры указаны в инструкции).

Если причиной неисправности является датчик температуры или терморегулятор, заменяется непригодная деталь. Выход из строя нагревательного элемента требует демонтажа напольного покрытия, вскрытия стяжки, ремонта повреждённых участков кабеля.

Виды электического теплого пола

Электрические полы делятся на три разновидности:

  • инфракрасные – функция обогрева по принципу инфракрасного излучения;
  • термоматы – помещение обогревается за счёт специальных тонких кабелей (одно-/двухжильных);
  • кабельные – обогрев происходит при помощи кабельных секций.

Разновидности инфракрасных конструкций:

  • плёночные;
  • стержневые.

Виды кабельных обогревов:

  • конструкция для тонкого пола;
  • система, аккумулирующая тепло;
  • обогрев прямого действия;
  • конструкция под деревянное покрытие.

Устройство электрического теплого пола

Инфракрасная пленка состоит из двух слоёв полимерного материала, между которыми проходит углеродная наноструктура (нагревательный элемент). Материал излучает инфракрасный свет, длина волны составляет 5-20 мкм.

Конструкция содержит полосы углерода и медные шины. Ширина полосы – 1,5 см. Шины, покрытые серебром, соединяют полосы и пропускают электрический ток.

С обеих сторон нагревательный элемент защищён специальным полимером, который закрывает от влажности, возгорания и не задерживает инфракрасный свет.

Стержневой инфракрасный пол изготавливается в виде многочисленных стержней, подключённых параллельно друг другу с помощью соединительных проводов гибкого типа. Внутри стержней содержится смесь серебра, карбона, меди.

При попадании электрического тока на карбон происходит выделение тепловой энергии.

Термоматы изготавливаются с применением тонкого кабеля, закреплённого на сетке из стекловолокна. Для защиты нагревательная жила внутри кабеля закрывается специальным экраном, изоляционным материалом и дополнительной оболочкой.

Температура нагрева регулируется при помощи терморегулятора. К сети электропитания подключается за счёт холодного провода, длина которого составляет не менее 2 м.

Специальная муфта используется для соединения нагревательного и холодного кабеля. Температура поверхности регулируется при помощи термостата и термодатчиков.

Кабельный пол отличается высокими показателями КПД – происходит почти полное преобразование электрического тока в энергию.

Функцию нагревательного элемента, независимо от разновидности системы, выполняет кабель. Он делится на два типа:

  • резистивный;
  • саморегулирующийся.

Резистивный кабель бывает одно- или двухжильным. Одножильный кабель включает металлическую жилу и слой изоляции. В двухжильном кабеле одна жила может выполнять функцию нагрева, вторая – питания. Возможно наличие двух нагревательных жил.

С внешней стороны кабель защищён оплёткой из металла и экраном. Количество энергии, которое выделяется саморегулирующимся кабелем, изменяется в зависимости от окружающей температуры. Нагревательный кабель поставляется в виде катушки, рулонов и секций.

Обогрев включает термостаты, регулирующие температуру, и термодатчики, предназначенные для получения сведений об условиях окружающей среды для эффективной работы.

Характеристики

Комплект инфракрасного пола состоит из плёнки, установочных проводов, контактных зажимов, битумной изоляции, документации (руководства по монтажу, паспорта, гарантии).

Технические характеристики плёночного инфракрасного покрытия:

  • длина – 50 м;
  • ширина – 0,5-1 м;
  • толщина – 0,23-0,47 мм;
  • температура – 31°С;
  • потребляемая мощность 1 м² – 25-35 Вт/ч.

Технические характеристики стержневого инфракрасного покрытия:

  • максимальная длина – 25 погонных метров;
  • ширина – 0,83 м;
  • расстояние между стержнями – 0,10 м;
  • температура – 28-31°С;
  • потребляемая мощность – 24 Вт/ч.

В комплекте с нагревательным матом поставляется тонкий мат, оснащённый кабелем с высокотемпературным изоляционным слоем, механический регулятор с термодатчиком, гофрированная трубка, документация.

Технические характеристики термомата:

  • толщина – 4,5 мм;
  • ширина – 45 см;
  • максимальная температура нагревательного элемента – 90°С;
  • потребляемая мощность 80-220 Вт/ч.

В комплекте кабельного устройства есть нагревательный элемент, термодатчик, терморегулятор, крепёжные элементы, документация, включая схему монтажа и инструкцию.

Технические характеристики кабельного тёплого пола:

  • максимальная температура нагревательного элемента – 65°С;
  • толщина – 7,5 мм;
  • потребляемая мощность – 110–200 Вт/ч.

Плюсы

Инфракрасный отличается энергоэффективностью, поскольку преобразовывает излучаемую энергию в тепло. Конструкция экономичнее по сравнению с кабельными системами. Нагревание поверхности происходит на протяжении нескольких минут.

При механическом повреждении теряет работоспособность только вышедший из строя сегмент конструкции. Оставшаяся система продолжает работать в привычном режиме. Обогрев помещения происходит равномерно.

Покрытие не подвергается процессам коррозии, устойчиво к возгоранию. Возможно применение плёнки в комнатах с повышенной нагрузкой на напольное покрытие (в общественных местах), и использование материала в качестве стенового источника тепла. Другие преимущества:

  1. Быстрый монтаж благодаря отсутствию дополнительных работ. На установку уходит не более 1 дня.
  2. Эксплуатация возможна непосредственно после монтажа.
  3. Установка конструкции на любые напольные покрытия без предварительной подготовки и стяжки основания.
  4. Использование терморегулятора настраивает температурный режим в помещении.
  5. Нагревание воздуха при помощи инфракрасного излучения не сопровождается изменением уровня влажности.
  6. ИК-излучение не несёт вреда для человеческого организма, а наоборот – производит лечебный эффект.

Использование нагревательных матов экономит высоту помещения, поскольку для монтажа требуется не более нескольких сантиметров. Термомат экономно расходует электрическую энергию. Отсутствует необходимость в монтаже под крупной бытовой техникой, мебелью.

Маты отличаются простой технологией установки. Другие преимущества:

  1. Быстрое прогревание напольного покрытия в связи с близким расположением к поверхности;
  2. Толщина (3-4 мм);
  3. Равномерный обогрев комнаты;
  4. Отсутствие вредного излучения;
  5. Экологическая безопасность используемых материалов;
  6. Стойкость к коррозии.

Кабельное устройство монтируется непосредственно в стяжку, поэтому не занимает свободное пространство. На протяжении срока эксплуатации конструкция не нуждается в дополнительном обслуживании. Во время работы не способствует образованию пыли.

В конструкции не используются вещества, вызывающие аллергические реакции. Другие преимущества:

  1. Подразумевает установку и поддержание необходимого температурного режима.
  2. Благодаря термодатчикам тёплый пол получает информацию об окружающей среде и реагирует на изменения в ней.
  3. Не нуждается в применении дополнительных приборов.
  4. Отличается продолжительным сроком службы, безопасностью и надёжностью.

Общие преимущества:

  1. Установка в общественных помещениях.
  2. Элементы конструкции не видны под напольным покрытием и не влияют на дизайн помещения.
  3. Регулятор температуры настраивает автоматическое включение и выключение обогрева.
  4. Используется как главный или дополнительный источник отопления.
  5. Простой и быстрый монтаж, не требующий специальных знаний и оборудования.
  6. Продолжительный эксплуатационный срок.
  7. Равномерное прогревание по площади.
  8. Нет необходимости в установке дополнительного оборудования для запуска.

Справка

Единственное, о чем следует сказать детальнее – это коэффициент энергопотребления 0,35, который обеспечивает терморегулятор для теплого пола. Некоторые потребители зададутся вопросом: почему указана именно такая цифра? Дело в том, что принцип работы терморегулятора состоит в следующем – пленочный инфракрасный теплый пол нагревается до заданной температуры от 10 секунд до 1 минуты. После этого терморегулятор автоматически отключает питание и происходит естественное охлаждение термопленки. Этот процесс занимает от 2-х до 10 минут (в зависимости от степени теплоизоляции дома и опять-таки установленной температуры). Понятно, что в это время пленочный пол не потребляет энергии вообще. Когда же срабатывает температурный датчик, терморегулятор опять включает пол, и снова идет нагрев от 10 до 60 секунд. Потом опять отключение и т.д. Как видим, коэффициент 0,35 – это усредненный показатель реального энергопотребления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *