Светотехнические величины

  • автор:

Всем привет, пятиминутка основ теоретической физики 🙂

По результатам предыдущего обзора-теста-сравнения ДХО в штатные фары () мне в ЛС поступает куча вопросов о том, каковы основные количественные светотехнические величины, по которым можно объективно сравнить разные источники света (ДХО, бытовые цокольные лампы и пр.), почему надо замерять люмены, а не люксы и т.п.
Есть мнения, что «не в люменах дело, главное это угол», или «цифры это цифры, а глаз это глаз».

Самое главное, что нужно уяснить это то, что основная единица измерения светового потока (люмен), по определению своему привязана именно к восприятию человеческого глаза.
Вполне точное определение люмена дается, например, в Википедии: ru.wikipedia.org/wiki/%D0…B%D1%8E%D0%BC%D0%B5%D0%BD

Вторая величина это сила света — пространственная плотность светового потока в заданном направлении, т.е. световой поток, отнесенный к телесному углу, в котором он излучается.
Измеряется сила света в канделлах, величина пропорциональна световому потоку. т.е. чем выше поток, тем сильнее сила света. Ну, либо если сила света слабее, то аналогичного потока можно добиться уменьшением угла.
Как раз канделлы прописаны в ГОСТ на ДХО, например, и остальные источники света.
Отличие в том, что световой поток можно (грубо) направить (сфокусировать) по-разному, в итоге получая разную силу света. Пример простой — лазер и фонарь уличного освещения. Сила света у лазера много больше, а мощность много меньше. Но достигается это засчет минимального угла свечения.

Освещенность — плотность светового потока на освещаемой им поверхности. Световой поток, отнесенный к площади освещаемой поверхности, измеряемой в м2, при условии его равномерного распределения по поверхности, когда свет источника падает на нее перпендикулярно.
Это те самые люксы, что замерял пробрайт 🙂
Так же является производной от светового потока — люмены/м2 = люксы. Но нужна равномерность.

Ключевая величина — яркость.
Если кто-то скажет вам, что яркость не зависит от светового потока (люмены), то это значит только одно: человек не знает и не понимает даже элементарных вещей 🙂
Яркость является световой величиной, непосредственно воспринимаемой глазом. Она определяется отношением силы света в данном направлении к площади проекции излучающей поверхности на плоскость, перпендикулярную к направлению излучения.

Ровно по этой причине в ГОСТе указана минимальная площадь рефлектора фары + сила света, т.е. по сути определена яркость.
Если все тупо свести к сравнению, то в одной и той же фаре сильнее для глаза будет светить тот источник, световой поток которого (люмены) выше. Ну, естественно, при полной засветке рефлектора.

Итого: ВСЕ ключевые величины пропорциональны величине светового потока.
Ровно по этой причине основной светотехнической характеристикой изделий уже давно и является люмен.

Оптический диапазон

Оптическая астрономия занимается электромагнитным излучением с длинами волн от 0.3 до 10 мкм, которые соответствуют оптическому окну прозрачности земной атмосферы. Для выражения длин волн в оптике часто применяется внесистемная единица ангстрем (1 А = 10-10 м). Исторически оптический диапазон — первый (а до XX века — единственный) диапазон, в котором проводились астрономические наблюдения, и человеческий глаз был единственным приемником излучения до середины XIX века (времени появление фотографии и ее применения в астрономии). Эти исторические особенности и повлияли на специфику оптической астрофотометрии.

Прежде всего, освещенность, создаваемую небесным телом, в оптической астрономии принято называть блеском этого светила (и ошибочно — яркостью, хотя и в физике, и в астрономии понятие яркости имеет совсем другой смысл), и измеряется он в безразмерных логарифмических единицах, называемых звездными величинами и обозначаемых через m. Еще во 2 в. до н.э. Гиппарх разделил по блеску все видимые невооруженные глазом звезды на 6 классов, названных им звездными величинами, причем звездам с наибольшим блеском соответствовала 1-я величина, а с наименьшим — 6-я, и звезды 2-й величины были слабее звезд 1-й величины настолько же, насколько звезды 3-й величины — звезд 2-й величины, и т.д. Это деление оказалось отражением психофизиологического закона Вебера — Фехнера, заключающегося в том, что человеческий глаз воспринимает линейное увеличение освещенности в логарифмической шкале: m = a +b*lg(E), где a и b — некоторые постоянные коэффициенты. В середине XIX века английский астроном Н.Погсон обратил внимание, что у разных наблюдателей интервалу в 5 звездных величин соответствует отношению освещенностей около 100. Он предложил считать это отношение равным точно 100, и разность блеска в 1m соответствует отношению освещенностей, равным 2.512. На основании этого соотношения была принята фотометрическая шкала звездных величин, определяемых по формуле Погсона:

E/E0 = 2.512m0-m (1)

или

m — m0 = — 2.5*lg(E/E0) (2)

Таким образом, по шкале Погсона звездные величины могут быть дробными, а для светил с набольшим блеском — и отрицательными. Например, Солнце имеет блеск Е=-26m.7, для полной Луны Е=-12m.7, блеск Венеры достигает Е=-4m.8.

Нуль-пункт этой шкалы устанавливается международным соглашением между астрономами путем выбора фотометрического стандарта. Сначала таким стандартом была Полярная звезда (которая сейчас известна как переменная звезда — цефеида), затем — примерно сотня звезд Северного Полярного Ряда (NPS). Для визуальных звездных величин (т.е. с эффективной длиной волны l = 5550 ангстрем, соответствующей наибольшей чувствительности человеческого глаза) звезда 0m создает освещенность на верхней границе земной атмосферы E = 2.5*10-6 люкс, а освещенность в 1 люкс создавала бы звезда с блеском, равным -13m.89+/-0.05, наблюдаемая вне земной атмосферы.

Интегральный поток солнечного излучения за пределами земной атмосферы на среднем расстоянии Земли от Солнца (1 а.е.) равен (1367 +/- 6) Вт/м2 и называется солнечной постоянной.

Все было бы просто, если бы в спектрах всех космических источников излучения наблюдалось одинаковое распределение энергии по длинам волн или все приемники излучения имели бы одинаковую спектральную чувствительность. На самом деле неверно и то, и другое, поэтому разные детекторы будут по-разному сравнивать блеск двух источников или одного источника в двух разных спектральных диапазонах.

Человеческий глаз воспринимает излучение в интервале длин волн от 0.38 до 0.70 мкм с максимумом чувствительности на l = 0.55-0.59 мкм. Фотометрическая система, основанная на кривой спектральной чувствительности глаза, исторически была самой первой, и определяемый из прямых наблюдений блеск светила называется визуальной звездной величиной.

Следующим светоприемником стала фотографическая пластинка, воспринимающая излучение в интервале 0.36 — 0.54 мкм с максимумом на 0.42 мкм, то есть целом фотопластинка более чувствительна к синим и УФ-лучам. Блеск, определенный путем фотометрирования изображения звезды на обычной фотопластинке, или полученный при помощи сурьмяно-цезиевого фотоумножителя с синим фильтром, называется фотографической (синей) звездной величиной.

Фотографические определения блеска имеют много преимуществ по сравнению с визуальными, главные из которых — одновременное получение блеска для многих источников и объективность (независимость от конкретного наблюдателя), а также возможность длительного хранения и последующих независимых измерений на ней. Для того, чтобы определять визуальный блеск фотографическим путем, была введена система фотовизуальных (желтых) звездных величин, которые получаются из фотометрирования специальных ортохроматических фотопластинок, снятых через желтый светофильтр. Благодаря специально подобранной фотоэмульсии этих пластинок визуальные и фотовизуальные звездные величины практически совпадают.

В 1953 г. Х.Л.Джонсон и У.У.Морган разработали принятую в качестве международной стандартной системы широко используемую в настоящее время трехцветную широкополосную электрофотометрическую UBV-систему, охватывающую длины волн от 0.30 до 0.70 мкм. В ней полоса B примерно соответствует фотографической звездной величине, а V — фотовизуальной. Система достаточно хорошо воспроизводима и легко реализуется со стеклянными светофильтрами и фотоумножителем с сурьмяно-цезиевым катодом (S 14) и кварцевым окном. Позже для расширения рабочего энергетического диапазона система UBV была продолжена в сторону ИК-диапазона, где были выделены полосы RIJHKLMN, соответствующие интервалам прозрачности земной атмосферы. Более коротковолновая область для наземных наблюдений недоступна, поскольку для волн короче 0.29 мкм земная атмосфера практически непрозрачна. Для полос расширенной системы UBV в таблице приведены средние длины волн l, полуширины (ширины кривых чувствительности на уровне половины от максимума) Dl в мкм и плотности потока для звезды 0m.0 Ф1 (в 10-14 Вт/см2/мкм) и Ф2 (в 10-24 Вт/м2/Гц). Все звездные величины после учета межзвездного поглощения считаются совпадающими для звезд спектрального класса A0V.

Существуют и другие фотометрические системы, которые различаются наборами эффективных длин волн l0 и полушириной соответствующих полос пропускания Dl (ширина полосы по половине интенсивности на волне l0). Фотометрические системы делятся на на широкополосные (Dl > 300 А), среднеполосные (Dl ~ 100 — 300 A) и узкополосные (Dl Разность звездных величин светила, измеренных в двух спектральных диапазонах, называется его показателем цвета, или колор-индексом. В системе UBV применяются два показателя цвета: ультрафиолетовый (U-B) и сине-зеленый (B-V). Большой положительный показатель B-V у звезды свидетельствует о слабости голубого участка ее спектра по сравнению с желто-зеленым, то есть эта звезда — красная. Отрицательные значения B-V характерны для голубых звезд. Показатель цвета, присущий звездам данного спектрального класса, называется нормальным цветом, и его можно измерить у близких звезд или же звезд в областях, где межзвездное поглощение пренебрежимо мало. При наличии межзвездного поглощения измеренный показатель цвета будет отличаться от нормального, и разности измеренного и нормального цветов EU-B и EB-V (на примере системы UBV) называются избытками цвета:

EU-B = (U-B) — (U-B)0

EB-V = (B-V) — (B-V)0

Определение избытков цвета дает возможность оценить, например, межзвездное поглощение и металличность (долю тяжелых элементов) звезд.

Наконец, создаваемая источником освещенность, просуммированная по всем участкам спектра, определяет его болометрическую звездную величину. Ее непосредственное определение возможно только во внеатмосферных экспериментах с использованием болометра (интегрального приемника излучения). Болометрические абсолютные звездные величины звезд лежат в пределах от -10m до +18m. Болометрическая величина обычно определяется не из наблюдений, а через болометрическую поправку Db- разность между болометрической звездной величиной и звездной величиной в одной из фотометрических систем (обычно U, B или V). Если система не указывается, то под болометрической поправкой подразумевается разность между болометрической величиной и фотовизуальной величиной V. Болометрическая поправка является функцией эффективной температуры Тэ звезды (температуры абсолютно черного тела, с единицы поверхности которого в единицу времени излучается энергия L/(4*p*R2), где L — светимость этой звезды во всех спектральных диапазонах, а R — ее радиус) и характеризует разницу между полным излучением звезды и ее излучением в оптическом диапазоне. Условно принято, что болометрическая звездная величина звезд спектральных классов F3-F5 (Тэ = 6500-7000 K) равна их фотовизуальной величине V (Db = 0), поскольку для таких звезд наибольшая доля излучаемой энергии приходится на видимый диапазон, в то время как у более горячих она смещается в ультрафиолетовую область, у более холодных — в инфрокрасную. Для всех остальных звезд болометрическая поправка отрицательна. Для Солнца (Тэ = 5785 К) Db = -0m.08, для горячих звезд класса В0 (Тэ = 28000 K) Db ~ -2m.8, для холодных красных сверхгигантов класса М5 (Тэ = 2800 K) Db = -3m.4.

Видимый блеск небесных тел зависит не только от их светимостей, но и от расстояний до них. Для сравнения светимостей введено понятие абсолютной звездной величины — блеска, которым обладало бы светило, если бы находилось на стандартном расстоянии, равном 10 пк. Например, для Солнца M = +4m.8. Соотношение между абсолютной звездной величиной М, видимой величиной m (исправленной за межзвездное поглощение и красное смещение) и расстоянием r (в парсеках) до светила имеет вид:

M = m + 5 — 5*lg(r) (3) или для неисправленного за межзвездное поглощение видимого блеска

m — M = 5*lg(r) — 5 + A(r) (4) где A(r) — межзвездное поглощение в данном направлении до расстояния r в том же спектральном интервале, к которому относятся m и M. Разность m — M называется модулем расстояния, который в отсутствии межзвездного поглощения зависит только от расстояния.

Для внегалактических объектов абсолютная звездная величина определяется аналогичным образом, и галактики имеют абсолютные величины от -24m до -6m. Для нашей Галактики М = -21m. Если бы все звезды Галактики были сосредоточены в ее ядре, с расстояния расстоянии 10 кпк, такое ядро имело бы блеск -6m. Однако на самом деле наибольший вклад в суммарную светимость Галактики вносят звезды, расположенные в галактическом ядре и диске, то есть в областях, богатых газово-пылевой материей. Полощение света в последней и определяет видимую невысокую яркость ночного неба.

В практическом плане формулы 1-4 реализованы в виде калькулятора PHOT на сайте проекта RTT-150, который позволяет вычислить любой из параметров m, M, r или A(r) по остальным.

Для объектов Солнечной системы, светящихся отраженным солнечным излучением (планеты, астероиды, кометы), за абсолютную величину принимается блеск, который имело бы данное небесное тело, если бы находилось на расстоянии 1 а.е. от Земли и 1 а.е. от Солнца (поскольку освещенность поверхности самого тела обратно пропорциональна квадрату его расстояния от Солнца) в фазе, равной единице. Абсолютная звездная величина такого несамосветящегося объекта определяется его размером и отражательной способностью его поверхности. Отношение потока излучения, рассеянного поверхностью по всем направлениям, к падающему на нее потоку, называется альбедо. В планетной фотометрии применяют понятие геометрического альбедо Аг:

Аг = E0/Eл, где E0 — освещенность на Земле, создаваемая небесным телом в полной фазе, а Eл — освещенность, которую создал бы на Земле плоский ламбертовский абсолютно белый экран того же размера, что и небесное тело, помещенный на место этого тела и ориентированный перпендикулярно лучу зрения (экран Ламберта рассеивает падающее излучение одинаково во всех направлениях). Поскольку планеты имеют форму, близкую к сферической, то используется также сферическое альбедо

Ас = Аг*Q, где Q <=1 — фазовый интеграл, учитывающий изменение видимой с Земли освещенной площади небесного тела, то есть фазы.

В отношении комет фотометрический закон изменения блеска (обратно пропорционально квадратам расстояния от Земли и Солнца) применим только к ядрам, и то не всегда, поскольку может происходить как изменение их альбедо, так и изменение размеров (например, неоднократно наблюдавшееся деление ядер, а также потеря вещества у периодических комет, значительно приближающихся к Солнцу и вследствии этого становящихся с каждым оборотом все слабее и слабее). В целом же по мере приближения к Солнцу нагрев ядра приводит к резкому усилению интенсивности выделения газов и пыли из последнего. Поэтому за счет увеличения отражающей площади суммарный блеск комет нарастает гораздо быстрее, чем того требует закон E ~ 1/r2. Обычно изменение блеска головы кометы аппроксимируется законом E ~ 1/rn, где r — расстояние от Солнца, а показатель степени n для большинства комет близок к 4, но у отдельных комет наблюдаются значительные отклонения от этого закона. Кроме того, на связанное с изменением r плавное изменение блеска часто накладываются вспышки, вызванные взрывным выбросом вещества из кометных ядер.

Поднятся наверх страницы

Радиодиапазон

Радиоастрономия занимается электромагнитным излучением с длинами волн от 1 мм до километров. Радиоизлучение в диапазоне от l ~ 30 м до l ~ 1 см свободно проходит через земную атмосферу и поэтому может быть зарегистрировано наземными приемниками. Радиоволны с l > 30 м поглощаются или отражаются земной ионосферой. Волны с l < 1 см поглощаются молекулами атмосферных газов, хотя в миллиметровом диапазоне есть ряд интервалов прозрачности и полупрозрачности, в частности, на 8, 4 и 2.4 мм.

Для выражения спектральной плотности потока излучения в радиоастрономии применяется внесистемная единица Янский, 1 Ян = 10-26 Вт/(м2*Гц).

Поднятся наверх страницы

Рентгеновский и гамма- диапазоны

Рентгеновский диапазон охватывает область электромагнитного излучения с длинами волн от 100 до 0.1 ангстрем, гамма-диапазон — менее 0.1 ангстрема. Такое излучение поглощается земной атмосферой на высотах 30-100 км (до высоты 30 км проникает только жесткое излучение) и до земной поверхности не доходит, поэтому астрономические наблюдения в рентгеновском и гамма диапазонах возможны только во внеатмосферных экспериментах или с высотных баллонов.

Для характеристики фотонов в этих диапазонах обычно пользуются не длинами волн или частотами, а их энергиями. Поскольку E=h*n = h*c/l, где Е — энергия фотона, n и l — его частота и длина волны, h — постоянная Планка, с — скорость света в вакууме, то нетрудно подсчитать, что длине волны l = 1 ангстрем соответствует энергия ~ 2*10-15 Дж = 2*10-8 эрг. Кроме того, применяется также и внесистемная единица электронвольт: 1 эВ равен кинетической энергии, которую приобретает заряженная частица с зарядом электрона е при свободном движении в электрическом поле между двумя точками, имеющими разность потенциалов 1 Вольт. 1 эВ = 1.60219*10-19 Дж = 1.60219*10-12 эрг, соответственно, 1 кэВ = 1.60219*10-9 эрг и 1 МэВ = 1.60219*10-6 эрг. То есть при l = 1 ангстрем фотон будет иметь энергию ~ 12.5 кэВ, а фотон с энергией 1кэВ будет иметь длину волны l ~ 12.5 ангстрем.

Для сравнения потоко рентгеновского излучения от космических источников также применяется еще одна внесистемная единица — Краб. Это поток излучения в заданном спектральном интервале от одного конкретного источника — Крабовидной туманности, или Краба. Такой выбор определяется относительной стабильностью этого источника, поскольку, в отличие от подавляющего большинства остальных рентгеновских источников, пульсар в Крабе не входит в двойную систему и у него отсутствуют эффекты, связанные с орбитальным движением, а поэтому отсутствует и выраженная переменность. Кроме того, Краб является одним из ярчайших рентгеновских источников на небе. По этим причинам Краб служит естественным калибровочным источников для приборов, работающих в космосе. Поскольку спектры рентгеновских источников могут существенно отличаться от спектра Краба, то сравнение потоков, выраженных в Крабах, имеет смысл только в том случае, если эти потоки были измерены в одном и том же спектральном диапазоне. Что соблюдается, если, например, сравниваются данные одного и того же прибора по разным источникам. Так, в интервале 2-30 кэВ (телескоп ТТМ на модуле «Мир-Квант») 1 Краб составляет ~ 0.3 фот/с/см2/кэВ ~ 2.6*10-8 эрг/с/см2 ~ 16.4 кэВ/с/см2.

Поднятся наверх страницы

Дочитал до конца? Теперь ты можешь…

» Напечатать эту статью на принтере

» Запаковать в архив и загрузить

» Выбрать другую статью

Измерение освещённости

Освещенность измеряют портативным прибором — люксметром. Его принцип работы аналогичен фотометру. Свет попадает на фотоэлемент, стимулируя ток в полупроводнике, и величина получаемого тока как раз пропорциональна освещенности. Есть аналоговые и цифровые люксметры. Часто измерительная часть соединена с прибором гибким спиральным проводом, чтобы можно было проводить измерения в самых труднодоступных, при этом важных местах. К прибору прилагается набор светофильтров, чтобы регулировать пределы измерений с учетом коэффициентов. Согласно ГОСТу, погрешность прибора должна быть не более 10%.

Измеряем освещённость люксметром

При измерении соблюдают правило, согласно которому прибор должен располагаться горизонтально. Его устанавливают поочередно в каждую необходимую точку, согласно схеме ГОСТа. В ГОСТе, кроме прочего, учитываются охранное освещение, аварийное освещение, эвакуационное освещение и полуцилиндрическая освещенность, там также описан метод проведения измерений. Измерения по искусственному и естественному освещению проводятся отдельно, при этом важно чтобы на прибор не попадала случайная тень. На основе полученных результатов, с использованием специальных формул делается общая оценка, и принимается решение, нужно ли что-то корректировать, или освещенность помещения и территории достаточна.

Освещенность рабочего места

Освещение исключительно важно для человека. С помощью зрения человек получает большую часть информации (около 90 %), поступающей из окружающего мира. Свет- это ключевой элемент нашей способности видеть, оценивать форму, цвет и перспективу окружающих нас предметов. Освещение влияет не только на функционирование зрительного аппарата, то есть определяет зрительную работоспособность, но и на психику человека, его эмоциональное состояние. Исследователями накоплено значительное количество данных по биологическому действию видимого света на организм. Сравнительная оценка естественного и искусственного освещения по его влиянию на работоспособность показывает преимущество естественного света. Ведущим фактором, определяющим биологическую неадекватность естественного и искусственного света, является разница в спектральном составе излучения, а также динамичность естественного света в течение дня.

Освещенность рабочего места

Работая при освещении плохого качества или низких уровней, люди могут ощущать усталость глаз и переутомление, что приводит к снижению работоспособности. В ряде случаев это может привести к головным болям. Причинами во многих случаях являются слишком низкие уровни освещенности, слепящее действие источников света и соотношение яркостей, которое недостаточно хорошо сбалансировано на рабочих местах. Головные боли также могут быть вызваны пульсацией освещения, что в основном является результатом использования электромагнитных пуско-регулирующих аппаратов (ПРА) для газоразрядных ламп, работающих на частоте 50 Гц. С точки зрения безопасности труда зрительная способность и зрительный комфорт чрезвычайно важны.

Для того чтобы обеспечить условия, необходимые для зрительного комфорта, в системе освещения должны быть реализованы следующие предварительные требования:

  • достаточное и равномерное освещение
  • оптимальная яркость
  • отсутствие бликов и ослепленности
  • соответствующий контраст
  • правильная цветовая гамма
  • отсутствие стробоскопического эффекта или пульсации света

Каждый вид деятельности требует определенного уровня освещенности на том участке, где эта деятельность осуществляется. Обычно, чем сильнее затруднено зрительное восприятие, тем выше должен быть средний уровень освещенности. Важно рассматривать свет на рабочем месте, руководствуясь не только количественными, но и качественными критериями.

Можно выделить следующие качественные характеристики освещения и способы их улучшения

Прямая блескость

Находящиеся в поле зрения человека поверхности высокой яркости могут производить неприятное, дискомфортное ощущение или вызывать состояние ослепленности. В результате резко снижается зрительная работоспособность. Источниками прямой блескости являются осветительные установки и источники света.

Уменьшение прямой блескости может быть достигнуто:

  • увеличением высоты установки светильников
  • уменьшением яркости светильников путем закрытия источников света светорассеивающими стеклами
  • ограничением силы света в направлениях, образующих большие углы с вертикалью, например, применением светильников с необходимым защитным углом
  • уменьшением мощности каждого отдельного светильника за счет соответствующего увеличения их числа

Отраженная блескость

Возникает при больших коэффициентах отражения поверхностей, попадающих в поле зрения. Наибольшая опасность возникает при освещении поверхностей, не являющихся диффузными, когда свет падает на рабочие поверхности таким образом, что глаза находятся на направлении зеркального отражения лучей. В этом случае человек видит либо зеркальное отражение источника света, либо размытое, но очень яркое световое пятно. В обоих случаях может возникнуть состояние ослепленности, но чаще уменьшается эффективный контраст между деталью и фоном. Устранение отраженной блескости достигается правильной организацией местного и локализованного освещения и таким расположением светильников, чтобы зеркально отраженные поверхностью лучи не попадали в глаза. Для этого лучше всего делать боковое или заднебоковое направление света.

Контраст между объектом и фоном

Чем больше яркость объекта, тем больший световой поток от него поступает в глаз и тем сильнее сигнал, поступающий от глаза в зрительный центр. Таким образом, казалось бы, чем больше яркость, тем лучше человек видит объект. Однако это не совсем так. Если поверхность (фон), на которой располагается объект, имеет близкую к объекту по величине яркость (например, линия бледно-желтого цвета на белом листе), то интенсивность засветки участков сетчатки световым потоком, поступающим от фона и объекта, одинакова (или слабо различается), величина поступающих в мозг сигналов одинакова, и объект на фоне становится неразличимым.

Чтобы объект был хорошо виден, яркости объекта и фона должны различаться. Разница между яркостями объекта и фона, отнесенная к яркости фона, называется контрастом. Контраст между деталями и фоном, который в наибольшей степени определяет видимость объекта, не всегда является заданным и может быть увеличен или уменьшен средствами освещения и созданием световой среды. Одним из эффективных средств для повышения контраста является искусственный фон (чаще всего светлый, если объект темный, или темный, если объект светлый). Разновидностью искусственных фонов являются световые столы, на которых поверхности просматриваются в проходящем свете.

Тени

Различаются собственные тени, образованные рельефом поверхности, и тени, падающие от предметов, находящихся вне рабочей поверхности — оборудования, мебели, тела и рук человека и т. д. Собственные тени в большинстве случаев полезны, так как позволяют лучше различать конфигурацию детали. Падающие тени почти всегда вредны. Их вред заключается в том, что они искажают контраст, отвлекают внимание и т. д. Особенно вредны движущиеся тени. Устранение или ограничение вредных теней осуществляется правильным выбором направления света. Например, когда человек пишет правой рукой, он смотрит на рабочую точку слева и с этой же стороны должен падать свет. Тени размазываются при увеличении размеров осветительных установок, смягчаются при достаточно высокой яркости стен и потолков и почти исчезают при отраженном освещении.

Насыщенность помещения светом

Для создания комфортных зрительных условий для человека важна не только освещенность какой бы то ни было поверхности, на которой осуществляется работа, но и впечатление насыщенности помещения светом, которое получает человек. При достаточной яркости рабочей поверхности одновременное присутствие в поле зрения темных поверхностей (например, стен, потолков, мебели, оборудования) создает затруднения при адаптации зрения. От яркости этих поверхностей зависит впечатление насыщенности помещения светом. Если в помещении установлены подвесные светильники прямого света, верхняя зона помещения останется темной. Это производит неприятное эстетическое и психологическое впечатление. Поэтому лучше применять светлую окраску стен и потолков, а для освещения применять светильники, излучающие некоторую (желательно не менее 15 %) часть светового потока в верхнюю полусферу.

Постоянство освещенности во времени

Изменения освещенности по времени можно подразделить на медленные и плавные, частые колебания и пульсации. Медленные изменения вызываются постепенными изменениями сетевого напряжения и факторами, изменяющими освещенность в процессе эксплуатации (загрязнением источников света, снижением светоотдачи и т. д.). Если освещенность при этом сохраняется на уровне не ниже нормативного значения, эти изменения не являются вредными. Причиной частых колебаний являются перемещения светильников, их раскачивание движением воздуха (ветер, сквозняк, вентиляционная установка и т. д.) и колебания напряжения в сети, порождаемые изменением нагрузки.

Пульсации

Пульсации освещенности обусловлены малой инерционностью излучения газоразрядных ламп, световой поток пульсирует при переменном токе промышленной частоты (50 Гц) с удвоенной частотой — 100 Гц. Эти пульсации неразличимы при наблюдении глазом неподвижной поверхности, но легко обнаруживаются при рассматривании движущихся предметов. Если при пульсирующем освещении быстро махать карандашом на контрастирующем фоне, то карандаш приобретает ясно видимые контуры. Это явление носит название стробоскопического эффекта — явление искажения восприятия движущихся или вращающихся объектов наблюдения. Практическая опасность стробоскопического эффекта состоит в том, что вращающиеся части механизмов могут показаться неподвижными, вращающимися с более медленной скоростью, чем в действительности, или в противоположном направлении. Это может стать причинной травматизма. Однако пульсации освещенности вредны и при работе с неподвижными поверхностями, вызывая утомление зрения и головную боль.

К пульсациям наиболее чувствительно периферическое зрение и поэтому они опасны при общем освещении. Выявлено также неблагоприятное влияние колебаний света на фоторецепторные элементы сетчатки, а также на функциональное состояние нервной системы, что связано с развитием тормозных процессов и снижением лабильности нервных процессов. Воздействие пульсации возрастает с увеличением её глубины и уменьшается при повышении частоты. Большинство исследователей отмечает отрицательное влияние пульсации освещённости на работоспособность человека как при длительном пребывании в условиях пульсирующего освещения, так и при кратковременном.

Ограничение пульсаций достигается чередованием питания ламп от разных фаз трехфазной сети. В ряде случаев применяется питание ламп током повышенной частоты, что достигается укомплектовыванием светильников электронными пуско-регулирующими аппаратами (ЭПРА).

Замеры освещенности для светодиодных светильников

Чтобы исключить искажения результатов, измерения выполняют после двух часов непрерывной работы светильников. Желательно повторить процедуру несколько раз.

К сведению. Для расчета инженерных проектов в государственной сфере применяют специализированные классификаторы затрат КОСГУ.

Измерение количества света для светодиодных устройств

Для наглядности удобно представить значение освещенности в типовых ситуациях. Эти значения можно сравнить с параметрами, которые приводят в сопроводительной документации производители светодиодных приборов.

Таблица освещенности

Значение, лк Условия
0,001-0,003 Ночью при сильной облачности
0,2-0,25 Полная луна, ясное небо
15-25 В океане на глубине 45-50 метров при малой замутненности
90-250 Изображение на экране, созданное с применением проекционной техники
90-120 Центр помещения с большими окнами в ясный солнечный день
40-60 Место для чтения
400-550 Рабочее пространство для выполнения сложных операций с миниатюрными объектами
1200-2500 Облачный день
10000-12000 Искусственное освещение съемочной площадки в теле,- или киностудии

В рекламных проспектах для улучшения продаж лампочку могут назвать яркой и энергосберегающей. Чтобы сделать правильный вывод о потребительских параметрах изделия, можно пользоваться представленной выше информацией.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *