Вентиляция

  • автор:

Для жизнедеятельности человека большое значение имеет качество воздуха. От него зависит самочувствие, работоспособность и в конечном итоге здоровье человека. Качество воздуха определяется его химическим составом, физическими свойствами, а так же наличием в нем посторонних частиц. Современные условия жизни человека требуют эффективных искусственных средств оздоровления воздушной среды. Этой цели служит техника вентиляции.

Вообще вентиляцией (от лат. ventilatio – проветривание), согласно общепринятому определению, называют регулируемый воздухообмен в помещении, а также устройства, которые его создают. Назначением вентиляции является поддержание химического и физического состояния воздуха, удовлетворяющее гигиеническим требованиям, т. е. обеспечение определенных метеорологических параметров воздушной среды и чистоты воздуха. К факторам, вредное действие которых устраняется с помощью вентиляции, относятся: избыточная теплота (конвекционная, вызывающая повышение температуры воздуха, и лучистая); избыточные водяные пары – влага; газы и пары химических веществ общетоксичного или раздражающего действия; токсичная и нетоксичная пыль; радиоактивные вещества.

Общие требования и показатели микроклимата

Санитарные правила устанавливают гигиенические требования к показателям микроклимата жилых, общественных и рабочих мест производственных помещений с учетом интенсивности энерготрат проживающих и работающих, времени выполнения работы, периодов года и содержат требования к методам измерения и контроля микроклиматических условий.

Показатели микроклимата должны обеспечивать сохранение теплового баланса человека с окружающей средой и поддержание оптимального или допустимого теплового состояния организма. Показателями, характеризующими микроклимат в помещениях, являются:

— температура воздуха;

— температура поверхностей;

— относительная влажность воздуха;

— скорость движения воздуха;

— интенсивность теплового облучения.

При проектировании, строительстве и эксплуатации жилых зданий, предприятий коммунально-бытового обслуживания, учреждений образования, культуры, отдыха, спорта руководствуются требованиями Санитарно-эпидемиологических правил и нормативов СанПиН 2.1.2.1002-00″Санитарно-эпидемиологические требования к жилым зданиям и помещениям».

Особое внимание уделяется к производственным помещениям. Оптимальные микроклиматические условия установлены по критериям оптимального теплового и функционального состояния человека. Они обеспечивают общее и локальное ощущение теплового комфорта пребывания в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах.

При проектировании, строительстве и эксплуатации производственных помещений руководствуются санитарными правилами нормами СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений».

Оптимальные величины показателей микроклимата необходимо соблюдать на рабочих местах производственных помещений, на которых выполняются работы операторского типа, связанные с нервно-эмоциональным напряжением (в кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники и др.). Перечень других рабочих мест и видов работ, при которых должны обеспечиваться оптимальные величины микроклимата определяются Санитарными правилами по отдельным отраслям промышленности и другими документами, согласованными с органами Государственного санитарно-эпидемиологического надзора в установленном порядке.

При проектировании зданий и сооружений согласно СНиП 41-01-2003 следует предусматривать технические решения, обеспечивающие:

а) нормируемые метеорологические условия и чистоту воздуха в обслуживаемой зоне помещений жилых, общественных, а также административно-бытовых зданий предприятий;

б) нормируемые метеорологические условия и чистоту воздуха в рабочей зоне производственных, лабораторных и складских помещений в зданиях любого;

в) нормируемые уровни шума и вибраций от работы оборудования и систем теплоснабжения, отопления, вентиляции и кондиционирования, а также от внешних источников шума. Для систем аварийной вентиляции и систем противодымной защиты при работе или опробовании в помещениях, где установлено это оборудование, допускается шум не более 110 дБА, а при импульсном шуме — не более 125 дБА;

г) охрану атмосферного воздуха от вентиляционных выбросов вредных веществ;

д) ремонтопригодность систем отопления, вентиляции и кондиционирования

е) взрывопожаробезопасность систем отопления, вентиляции и кондиционирования.

Классификация систем вентиляции

При всем многообразии систем вентиляции, обусловленном назначением помещений, характером технологического процесса, видом вредных выделений и т.п., их можно классифицировать по следующим характерным признакам: по способу создания давления для перемещения воздуха, по назначению, по зоне обслуживания и по конструктивному исполнению.

По способу перемещения удаляемого из помещений и подаваемого в помещения воздуха различают вентиляцию естественную (неорганизованную и организованную) и механическую (искусственную).

Под неорганизованной естественной вентиляцией понимают воздухообмен в помещениях, происходящий под влиянием разности давлений наружного и внутреннего воздуха и действия ветра через неплотности ограждающих конструкций, а также при открывании форточек, фрамуг и дверей. Воздухообмен, происходящий так же под влиянием разности давлений наружного и внутреннего воздуха и действия ветра, но через специально устроенные в наружных ограждениях фрамуги, степень открытия которых с каждой стороны здания регулируется, является вентиляцией естественной, но организованной. Этот вид вентиляции называется аэрацией.

Механической или искусственной вентиляцией называется способ подачи воздуха в помещение или удаления из него с помощью вентилятора. Такой способ воздухообмена является более совершенным, так как воздух, подаваемый в помещение, может быть специально подготовленным в отношении его чистоты, температуры и влажности.

Вентиляцию с механическим побуждением (механическую вентиляцию) следует предусматривать:

а) если метеорологические условия и чистота воздуха не могут быть обеспечены вентиляцией с естественным побуждением (естественной вентиляцией);

б) для помещений и зон без естественного проветривания.

Системы механической вентиляции, автоматически поддерживающие в помещениях метеорологические условия на уровне заданных независимо от изменяющихся параметров внешней воздушной среды, называются системами кондиционирования воздуха.

По способу организации воздухообмена в помещениях вентиляция может быть общеобменной, местной (локализующей), смешанной, аварийной и противодымной. По назначению системы вентиляции подразделяются на приточные и вытяжные. Системы вентиляции, удаляющие загрязненный воздух из помещения, называются вытяжными. Системы вентиляции, обеспечивающие подачу в помещение наружного воздуха, подогреваемого в холодный период года, называются приточными. Вытяжные системы вентиляции в зависимости от места удаления вредных выделений, а приточные — от места подачи наружного воздуха подразделяются на общеобменные, местные и смешанные.

Общеобменная вентиляция предусматривается для создания одинаковых условий воздушной среды (температуры, влажности, чистоты воздуха и его подвижности) во всем помещении, главным образом в рабочей зоне. Когда какие-либо вредные вещества распространяются по всему объему помещения или нет возможности или нет возможности уловить их в местах выделения. Общеобменная вентиляция может быть как приточной, так и вытяжной, а чаще приоточно-вытяжной, обеспечивающей организованный приток и удаление воздуха.

При местной вытяжной вентиляции загрязненный воздух удаляется прямо из мест его загрязнения. Местная приточная вентиляция применяется в тех случаях, когда свежий воздух требуется лишь в определенных местах помещения (на рабочих местах). Примером такой вентиляции может служить воздушный душ – струя воздуха, направленная непосредственно на рабочее место.

Смешанные системы, применяемые главным образом в производственных помещениях, представляют собой комбинации общеобменной вентиляции с местной.

Аварийные вентиляционные установки, согласно СНиП 41-01-2003, предусматривают в помещениях, в которых возможно внезапное неожиданно выделение вредных веществ в количествах, значительно превышающих допустимые. Эти установки включают только в том случае, если необходимо быстро удалить вредные выделения.

Противодымная вентиляция предусматривается для обеспечения эвакуации людей из помещений здания в начальной стадии пожара.

Вопрос о том, какую из перечисленных систем вентиляции следует устраивать, решается в каждом отдельном случае в зависимости от назначения помещения, характера вредных выделений, возникающих в нем. И схемы движения воздушных потоков внутри здания.

Подробную информацию о технических решениях по применению видов вентиляции и о требованиях к проектированию систем вентиляции можно найти в СНиП 41-01-2003, п. 7.

Естественная вентиляция

Канальными системами естественной вентиляции называются системы, в которых подача наружного воздуха или удаление загрязненного осуществляется по специальным каналам, предусмотренных в конструкциях здания, или приставным воздуховодам. Воздух в этих системах перемещается вследствие разности давлений наружного и внутреннего воздуха.

Вытяжная естественная канальная вентиляция осуществляется преимущественно в жилых и общественных зданиях для помещений, не требующих воздухообмена больше однократного. В производственных зданиях согласно СНиП 2.04.05 – 86 естественную вентиляцию следует проектировать, если она обеспечит нормируемые условия воздушной среды в помещениях и если она допустима по технологическим требованиям.

Вытяжная естественная канальная вентиляция состоит из вертикальных внутренних или приставных каналов с отверстиями, закрытыми жалюзийными решетками, сборных горизонтальных воздуховодов и вытяжной шахты. Для усиления вытяжки воздуха из помещений на шахте часто устанавливают специальную насадку – дефлектор. Загрязненный воздух из помещений поступает через жалюзийную решетку в канал. Поднимается вверх, достигая сборных воздуховодов, и оттуда выходит через шахту в атмосферу. Вытяжка из помещений регулируется жалюзийными решетками в вытяжных отверстиях, а так же дроссель-клапанами или задвижками, устанавливаемыми в сборном воздуховоде и в шахте.

В жилых зданиях массовой застройки традиционно выполняется естественная вытяжная вентиляция. В начале массового жилищного строительства применялась вентиляция с индивидуальными каналами от каждой вытяжной решетки, которые соединялись с вытяжной шахтой непосредственно или через сборный канал на чердаке. В зданиях до четырех этажей эта схема применяется до сих пор. В высоких домах для экономии места через каждые четыре — пять этажей несколько вертикальных каналов объединялось одним горизонтальным, от которого далее воздух направлялся к шахте по одному вертикальному каналу.

В настоящее время принципиальным решением систем естественной вытяжной вентиляции многоэтажных зданий является схема, включающая в себя вертикальный сборный канал — «ствол» — с боковыми ответвлениями — «спутниками». Воздух поступает в боковое ответвление через вытяжное отверстие, расположенное в кухне, ванной комнате или туалете и, как правило, в междуэтажном перекрытии над следующим этажом перепускается в магистральный сборный канал. Такая схема значительно компактнее системы с индивидуальными каналами, может быть аэродинамически устойчивой и отвечает требованиям противопожарной безопасности.

Механическая вентиляция

Системы механической вентиляции по сравнению с естественной более сложны в конструктивном отношении и требуют больших первоначальных затрат и эксплуатационных расходов. Вместе с тем они имеют ряд преимуществ. К основным их достоинствам относятся: независимость от температурных колебаний наружного воздуха и его давления, а также скорости ветра; подаваемый и удаляемый воздух можно перемещать на значительные расстояния; воздух, подаваемый в помещение, можно обрабатывать (нагревать или охлаждать, очищать, увлажнять и осушать). Вследствие этого механическая вентиляция, как приточная, так и вытяжная, получила весьма широкое применение, особенно в промышленности.

Приточные системы механической вентиляции состоят из следующих конструктивных элементов: 1) воздухоприемного устройства, через которое наружный воздух поступает в приточную камеру; 2) приточной камеры с оборудованием для обработки воздуха и подачи его в помещения; 3) сети каналов и воздуховодов, по которым воздух вентилятором распределяется по отдельным вентилируемым помещениям; 4) приточных отверстий с решетками или специальных приточных насадок, через которые воздух из проточных каналов поступает в помещения; 5) регулирующих устройств в виде дроссель-лапанов или задвижек, устанавливаемых в воздухоприемных устройствах, на ответвлениях воздуховодов и в каналах.

Вытяжные системы механической вентиляции обычно состоят из следующих элементов: 1) жалюзийных решеток и специальных насадков, через которые воздух из помещений поступает в вытяжные каналы; 2) вытяжных каналов, по которым воздух, извлекаемый из помещений, транспортируется в сборный воздуховод; 3) сборных воздуховодов, соединенных с вытяжной камерой; 4) вытяжной камеры, в которой установлен вентилятор с электродвигателем; 5) оборудования для очистки воздуха, если удаляемый воздух сильно загрязнен; 6) вытяжной шахты, служащей для отвода в атмосферу воздуха, извлекаемого из помещений; 7) регулирующих устройств (дроссель-клапанов и задвижек).

Отдельные приточные и вытяжные системы механической вентиляции могут не иметь некоторых из перечисленных элементов. Например, приточные системы вентиляции не всегда комплектуются фильтрами для очистки воздуха.

В настоящее время в общественных и производственных зданиях устраивают преимущественно механическую вентиляцию, в которой воздух перемещается по сети воздуховодов и другим элементам системы с помощью радиальных и осевых вентиляторов, приводимых в действие электродвигателями.

Системы механической общеобменной вытяжной вентиляции следует предусматривать для помещений складов с выделением вредных газов и паров, предусматривая резервную систему механической вытяжной вентиляции на требуемый воздухообмен, размещая местное управление системой при входе. Допускается предусматривать системы общеобменной вентиляции с естественным побуждением при выделении вредных газов и паров 3-го и 4-го классов опасности, если они легче воздуха.

Выбор вентиляционной системы для частного дома

Встает вопрос, какую систему лучше всего использовать в своем домовладении. Если бюджет неограниченный, то можно установить приточно-вытяжную. Она позволит обеспечить приток холодного воздуха летом и горячего зимой. Для этого придется произвести монтаж кондиционера. Но обязательно должна учитываться локация дома. Если домовладение располагается в экологически чистом районе, то от приточно-вытяжной лучше отказаться.

Любой дом является полностью герметичным коробом, который нуждается в качественном воздухообмене. При строительстве дома вблизи фабрик и заводов необходимо позаботиться о том, чтобы поступающий внутрь воздух был максимально очищен. Но если же домовладение в горах, на удалении от промышленных сооружений, достаточно будет установить систему для естественной вентиляции.

При расположении дома в черта города и использовании при его строительстве искусственных материалов обязательно применять системы приточно-вытяжной вентиляции. Многие строительные материалы, хоть и являются высокотехнологичными, выделяют большое количество вредных веществ — хлорводород, монооксиды, формальдегиды и пр. При выборе системы вентиляции нужно обращать внимание на локацию домовладения и ваши финансовые возможности.

Нарушение работы вентиляции

Среди недостатков классической схемы естественной вентиляции можно выделить такие:

  1. Полное отсутствие регулирования и контроля воздуха, поступающего в комнату и удаляемого из нее.
  2. Повышается влажность, на окнах образуется конденсат, на стенах начинает появляться плесень и грибок. Система не справляется с основной своей задачей — воздухообмен слабый.
  3. При слишком сильном воздухообмене влажность снижается (до 30% и меньше). В дом поступает сухой воздух, но не может увлажниться, т. к. он сразу же уходит через вентиляционное отверстие. Потери тепла при этом увеличиваются.
  4. Летом уменьшается тяга, что приводит к остановке воздухообмена. Обязательно нужно проводить проветривание. Если этого не делать, то влажный воздух начнет скапливаться и образуется грибок, плесень, появится неприятный запах.

При поломке одного или нескольких элементов в системе принудительной вентиляции происходит частичное или полное прекращение воздухообмена. Поэтому важно следить за состоянием всех фильтров и вентиляторов, при необходимости производить замену и ремонт. Если этого не сделать, то обязательно появится на стенах плесень, грибок, начнут запотевать окна.

Требования к вентиляционным системам

К системам вентиляции предъявляются требования, среди которых необходимо выделить такие:

  1. В рабочих зонах помещений должен создаваться нормальный микроклимат (температура, скорость движения воздуха, влажность).
  2. Все вредные пары и газы, аэрозоли должны быстро удаляться из помещения.
  3. Не должен попадать воздух из соседних комнат.
  4. Системы принудительной вентиляции должны легко обслуживаться и ремонтироваться.
  5. Недопустимо появление сквозняков.
  6. Никаких посторонних шумов и вибраций быть не должно.
  7. Осадки не должны попадать в вентиляционные каналы.

Желательно проводить аэродинамические испытания. Это позволит оценить скорость движения воздуха, давление, а это сказывается на нормальном функционировании всей системы.

Расчет вентиляции в частном доме

При проектировании системы вентилирования нужно обеспечить бесшумность движения воздуха. Скорость, с которой двигается воздух, должна составлять 2-4 м/с. Это среднее значение, его можно увеличить для участков магистрального типа и уменьшить для ответвлений, которые находятся в жилых помещениях. Главное условие — вентиляция в частном доме должна работать правильно, а для этого требуется подобрать оптимальный диаметр воздуховодов.

Площадь воздуховода равна отношению производительности (м³/ч) к произведению скорости (м/с) и 3600 с. Если вы знаете значение площади сечения, то можно определить диаметр по формуле d=2√A /π.

Выбирать нужно воздуховоды стандартного сечения. Причем при выборе нужно учитывать хотя бы небольшой запас. Предпочтительнее использовать трубы с круглым сечением — у них аэродинамическое сопротивление меньше, чем прямоугольных и квадратных такой же площади.

Центральный блок вентиляции в принудительных системах необходимо подключать к магистрали при помощи эластичных гофрированных труб, длина их должна быть более 1 м. Так у вас получится избавиться от посторонних звуков, которые передаются в комнаты. Поверх воздуховодов укладывается слой теплоизоляционного материала — это позволит избежать появления конденсата на стенках, а самое главное — избавит от появления посторонних звуков.

Вентиляция своими руками: план действий

Чтобы самостоятельно спроектировать систему вентиляции, придется совершить целый ряд действий. Проще, если последовательность известна.

Подготовительные работы

Сбор информации и элементарные расчеты — вот с его начинается самостоятельное создание проекта вентиляции.

  • Рассчитать кратность обмена во всем доме/квартире. Она зависит от объема помещений (нужно посчитать кубатуру каждого помещения), их назначения, количества проживающих. По санитарным нормам в жилых помещениях воздух должен сменяться один раз в час, в технических (кухня/ванная/туалет) — не менее трех раз в час. Нормы для котельных свои и их надо учесть (зависят от типа отопления). Сложив все цифры, получаем требуемую производительность системы, по которой считается сечение вытяжного воздуховода, подбирается производительность вентиляционного оборудования.
    Сначала надо нарисовать, как будет двигаться воздух — от притока, к вытяжке
  • Нарисовать схему движения воздушных потоков. При этом сразу приходится прикидывать положение приточных и втяжных каналов.
  • Нарисовать схему воздуховодов. Пока без размеров и деталировки, просто придерживаясь правил и стараясь вписать систему, не слишком усложняя дизайн. Вот тут все сложно, так как скрыть воздуховоды можно только за подвесным или натяжным потолком. В противном случае будет они открыты.

Предварительные данные готовы. Еще некоторое время обдумывайте где и какие устройства должны находится.

Расчеты параметров и деталировка

Когда все вопросы по схеме решены, она приняла окончательный вид, приступаем к деталировке. Сначала тоже идут расчеты, потом приходится искать составляющие системы, решать, какой фирмы использовать оборудование и сводить бюджет.

  • Рассчитать сечение воздуховодов, основываясь на кратности обмена, объеме помещения и скорости «бесшумного» передвижения воздуха. Иначе жить будет невозможно.
  • Внести размеры на схему (можно перерисовать).
  • Провести деталировку. То есть составить перечень необходимых элементов систем с указанием типа и сечения.
    Деталировка — подробный перечень всех требующихся компонентов с размерами, производительностью, скоростью
  • Высчитать сопротивление каждого участка системы, подобрать вентиляторы (по рабочей точке в характеристике с учетом полученного сопротивления системы). Учесть уровень шума от работы вентилятора, принять меры по его уменьшению (подобрать малошумную модель).
  • Посчитать стоимость компонентов системы. Попытаться свести «наличку» с желаниями. Тут приходится несколько раз менять компоненты, двигаясь от того, что хочется, к тому, что реально.
  • Рисуем чистовой проект с полной деталировкой. Надо помнить также про узлы прохода вентаканалов через стены/потолок/кровлю, расходные и изоляционные материалы, вентиляционные решетки и диффузоры, крепеж и все другие «мелочи» которые выливаются в приличную сумму.

Монтаж и настройка

«Осталось» найти, купить, смонтировать. Написано мало, а сил, времени, нервов на реализацию этого пункта потребуется много. Только после этого можно сказать, что Вентиляция своими руками полностью готова.

Но и на этом не все. Сделанную своими руками вентиляцию надо запустить, отрегулировать. Это тоже не самый простой процесс — добиться согласованной работы системы в целом. Потом, в процессе эксплуатации, перенастройку приходится делать часто. При смене сезона, изменении количества проживающих, смене погодных условий. В общем, регулировка системы вентиляции — еще одна обязанность владельца дома.

Такие отверстия на фасаде оставляют приточные клапана/рекуператоры

Прикиньте сами, вентиляция своими руками (имеется в виду монтаж) обойдется дешевле, но знаний и времени требует больше. Знания можно почерпнуть, а при нехватке времени придется искать и нанимать исполнителей, потом принимать их работу.

Другие решения

Рынок не стоит на месте, и сегодня предлагаются новые решения. Например, есть рекуператорные системы, которые сразу, через одно отверстие в стене, выводят отработанный воздух и подают свежий. Это идеальный выход, если вентиляцией озаботились после ремонта или если необходимо решить проблему только в некоторых помещениях. Главное, чтобы эти помещения имели хотя-бы одну стену, выходящую на улицу.

Есть устройство, которое через одно отверстие выводит отработанный воздух, забирает свежий. При этом еще и подогревает/охлаждает его

Недостаток этого способа организации вентиляции в доме или квартире один — очень высокая цена оборудования. Стоимость одного такого устройства — более 400$.

Определение и серьезность проблемы

Под вентиляцией понимают специально организованное движение воздушных масс. Оно необходимо для создания комфортных и здоровых условий жизнедеятельности человека. Вообще, система очень сложная в расчете. Стандартных решений, которые подходят всем или хотя-бы некоторой группе пользователей, просто нет. Каждый проект индивидуален. Играет роль даже расположение одной решетки, вентилятора. Очень многое зависит от положения дома относительно розы ветров и еще много мелочей. Чтобы спроектированная своими руками вентиляция работала хорошо, нужно серьезно разбираться.

Вентиляция — организованный обмен воздушных масс, в процессе которого отработанный воздух заменяется свежим

Хорошая вентиляция — залог здоровья и жизни

По санитарным нормам один человек с состоянии покоя перерабатывает» за час около 30 кубометров воздуха. Если воздух не обновляется, кислорода становится все меньше, углекислого газа и других продуктов жизнедеятельности — все больше. По мере уменьшения количества кислорода, ухудшается самочувствие. Длительная нехватка кислорода провоцирует развитие болезней.

Немного цифр, физиологов, отображающих влияние уровня углекислого газа CO2 на состояние человека:

  • Воздух высокого качества — до 800 ppm, бодрость, идеальное самочувствие.
  • Воздух среднего качества — 800 — 1000 ppm. На верхней границе половина людей ощущает сонливость, вялость, снижение концентрации и ухудшение качества и скорости обработки информации.
    Уровень углекислого газа влияет на самочувствие
  • Воздух низкого качества — 1000-1400 ppm. Вялость, заторможенность, проблемы с обработкой информации, ощущение «духоты».
  • Непригодный для жизнедеятельности воздух — ppm выше 1400. Неспособность сосредоточиться, сильная сонливость, усталость, проблемы со сном, сухость слизистых.

Физиологи считают содержание углекислого газа в воздухе на уровне 1400 ppm — самой низкой точкой для относительно нормального функционирования человека. Все показатели с большим количеством углекислого газа — это уже за гранью.

Наглядный пример

Чтобы оценить тяжесть ситуации без проветривания, приведем график, уровня CO2. Он снят в качестве эксперимента. Чтобы оценить насколько необходима вентиляция в современном доме/квартире с пластиковыми окнами и принятыми мерами по теплоизоляции.

Условия эксперимента. Спальня 13 квадратов (37 кубов), один человек и одна собака среднего размера. В доме вытяжная вентиляция, стояк на кухне и в котельной. В котельной установлен вытяжной вентилятор, который по таймеру работает пол ночи и пол дня. Приточки нет, доступ свежего воздуха через окна, которые имеют функцию проветривания и микропроветривания.

График уровня концентрации углекислого газа в спальне с закрытым окном и закрытыми дверьми

Расшифровка графика:

  • Точка 1. С 20 часов — работа за компьютером, двери приоткрыты, окно закрыто.
  • Точка 2. Окно открыли, двери приоткрыты, все покинули комнату.
  • Между 1-2 в комнату возвращались, окно закрыли, потом открыли. Все это можно отследить по колебаниям уровня CO2.
  • Точка 3. В 3-35 закрыты двери и окно, человек и собака спят.
  • Точка 4. 9-20 утра, человек проснулся. Уровень CO2 — 2600 ppm, что значительно ниже крайней нормы. Окно открыли, уровень углекислого газа менее чем за час вернулся к норме (Точка 5).

Как видно из графика, большая часть ночи проходит при очень высокой концентрации углекислого газа. Это может быть причиной усталости, плохого самочувствия утром. В общем, все понятно. При желании, можете провести подобный эксперимент самостоятельно. Требуется лишь метеостанция с возможностью измерения уровня углекислого газа (с памятью). Глядя на результаты эксперимента, значение системы вентиляции переоценить сложно. Давайте разбираться как она работает.

Воздуховоды для вентиляции для частного дома — требования и особенности

Чтобы система вентиляции работала с максимальной эффективностью необходимо, чтобы внутренняя поверхность воздуховода оказывала минимальное сопротивление движению воздуха. Посмотрим, как правильно выбрать воздуховоды для вентиляции своего дома.

– Главная задача
воздуховода – это позволить воздуху перемешаться свободно от точки забора воздуха к точке его выхода. И быть безопасным с точки зрения экологии и пожарной безопасности. Любая потеря давления сильно влияет или сводит на нет воздухообмен при естественной вентиляции. Потери давления возникают от неровной поверхности воздуховода, в горизонтальных участках, в коленах, тройниках и т.д. При прямоугольной форме воздуховода потери выше, чем при круглой, да и пыль в них скапливается хорошо.

Гибкий – гофрированный воздуховод оказывает самое большое воздушное сопротивление. И его лучше всего применять, когда необходимо сделать поворот или присоединить к вентиляционному каналу кухонную вытяжку.

Очень часто, застройщики, по разным причинам не хотят делать вывод через крышу, предпочитая вывести вентиляционный канал через стену. Это не правильно.

– Никогда, ни при каких обстоятельствах, не стоит выводить вентиляцию через стену. Фасад испортите.

Уже через пару лет на стене будет видимое пятно вокруг выхода.
А естественную вентиляцию выводить, таким образом, ещё и бессмысленно, так как совершенно не будет перепада высоты, и, соответственно, давления.

Если, при принудительной системе вентиляции, все воздуховоды соединяются коленами и переходниками с одним вертикальным каналом, то рекомендуется установить на крышу вентилятор Е190Р.

Для управления этим вентилятором, в удобном месте ставится тиристорный регулятор скорости. А сами воздуховоды берутся диаметром в 125 мм.

На FORUMHOUSE вас ждет статья про вентиляционные системы, много полезной информации о системе вентиляции, увлекательное обсуждение выбора материала для воздуховодов. А ознакомившись с нашим видео, вы сможете наглядно увидеть, как комплексный подход к устройству вентиляци, позволяет не только обеспечить дом свежим воздухом, но и экономить средства.

Циркуляция воздуха в помещении в зависимости от расположения приточных и вытяжных отверстий

Описание:

В распространении по помещению всякого рода «вредностей» (газы, пары, конвекционное тепло, пыль и пр.) и в установлении различных полей концентраций решающее значение имеют потоки воздуха, образующиеся в помещении. Эти потоки возникают в результате взаимодействия струй между собой и между ними и предметами и поверхностями, встречающимися им на пути.

Ключевые слова: циркуляция воздуха, Потоки воздуха, струи, приточные отверстия, вытяжные отверстия

В. В. Батурин, В. И. Ханжонков, инжeнeры, Московский институт охраны труда *

В распространении по помещению всякого рода «вредностей» (газы, пары, конвекционное тепло, пыль и пр.) и в установлении различных полей концентраций решающее значение имеют потоки воздуха, образующиеся в помещении.

Эти потоки возникают в результате взаимодействия струй между собой и между ними и предметами и поверхностями, встречающимися им на пути.

Струи могут быть различного происхождения – приточные (вентиляционные), тепловые от тел и поверхностей, имеющих температуру, отличную от температуры окружающего воздуха, струи, вытекающие из аппаратов, работающих под избыточным давлением, и т. п. Поэтому понятно, какое важное значение приобретает вопрос об изучении закономерностей отдельных струй, их взаимодействия и вызываемой ими циркуляции.

Если свободная струя, распространяющаяся в неограниченном пространстве, достаточно изучена с точки зрения ее структуры, то совершенно не изучены те циркуляционные потоки, которые вызываются струей в замкнутом помещении, вследствие чего общая картина движения потоков в помещении остается неясной.

В установлении общего движения потоков большая роль принадлежит струям, создаваемым вентиляцией, а следовательно, тому или иному расположению приточных и вытяжных отверстий в помещении.

Для выяснения этого вопроса были поставлены опыты с плоской и пространственной моделями. На первом этапе изучения ставились простейшие схемы расположений приточного и вытяжного отверстий с целью установления общих закономерностей потоков воздуха.

Наблюдения производились с изотермическим потоком, т. е. в полость модели впускался воздух (или в водяном лотке – вода) той же температуры, что и в модели.

Первоначальные опыты производились в плоском закрытом канале размером 400 х 730 х 40 мм3. Канал имел боковые стеклянные стенки, через которые производились наблюдения. Обе торцевые стенки с круглыми отверстиями, равными 40 мм (диаметр равен ширине канала), были устроены подвижными, что позволяло изменять расположение отверстий по высоте. Через полость модели прогонялся воздух, подкрашенный дымом. Воздуходувка обычно приключалась всасывающей стороной к одному или двум отверстиям, и тогда другие отверстия служили приточными. Картина потоков фотографировалась или зарисовывалась.

При сравнительно большом изменении числа Рейнольдса (от 8 000 до 100 000), вычисленного по диаметру приточного отверстия, картина потоков оставалась практически неизменной.

Это обстоятельство позволяет думать, что явление в отношении Re остается автомодельным, т. е. что явление не зависит ни от скорости, ни от масштаба модели.

Вместе с этим наблюдение потоков производилось и в геометрически подобном лотке с водой, поверхность которой посыпалась порошком магния. Снимки в гидролотке оказались совершенно идентичными со снимками, сделанными в плоском воздушном канале, но более отчетливыми, поэтому в дальнейшем они и приводятся.

Вторым этапом работы было изучение потоков в пространственной модели размерами 400 х 500 х 700 мм3. Отверстия для притока и вытяжки имели в этом случае диаметр 40 мм.

Воздух, подкрашенный дымом, прогонялся через полость модели. Ввиду ненаглядности фотоснимков в пространственной модели картина потоков зарисовывалась и описывалась. Когда накопился некоторый опыт, то оказалось возможным для понимания характера движения потоков в пространственной модели использовать снимки, сделанные в лотке.

Однако картины перетекания в плоской модели имеют свои специфические особенности, которые не находят места в пространственной и поэтому требуют пояснения. Так, если расположить вытяжку внизу модели в точке В (рис. 1а), а приточное отверстие в противоположной торцевой стенке сначала внизу, а затем перемещать его кверху до точки А, расположенной на расстоянии: примерно 11/16 Н от низа (от уровня вытяжки), то приточная струя в этом промежутке по изогнутым траекториям направляется к вытяжке к точке В. Если приток поступает точно из точки А, то он направляется (при том же положении вытяжки) либо книзу к точке В, либо кверху к точке С. При дальнейшем перемещении приточного отверстия кверху от точки А приток прижимается к стенке и направляется кверху к точке С **.

Таким образом, в плоской модели имеется некоторая точка А (при данных размерах модели находящаяся на высоте 11/16 Н от низа или уровня расположения вытяжки), характерная тем, что приток, выходящий из нее, может менять свою траекторию.

То обстоятельство, что передвижение приточного отверстия на 3/16 Н от середины не вызывает изменения схемы перетекания, объясняется, по-видимому, влиянием спектра всасывания вытяжного отверстия на основную струю.

Понятно, что если вытяжное отверстие в плоской модели поместить вверху, а приточное перемещать сверху вниз, то получим зеркальное изображение рис. 1а, как это представлено в схеме на рис. 1б.

При расположении приточного и вытяжного отверстий посредине модели (рис. 1в) опять получим неустойчивое направление перетеканий. В исключительно редких случаях поток перетекает из точек А и В по прямолинейному направлению. Малейшее отклонение отверстия в точке А от середины ведет к тому, что поток начинает прижиматься к ближайшей стенке.

Рисунок 1.

Струя воздуха, вытекающая из приточного отверстия, расположенного в плоской модели в точке А, может менять свою траекторию. Стрелками указаны места промежуточного расположения приточного отверстия

Это явление возможно объяснить тем, что при первом незначительном отклонении струи от середины размеры пространства, разделяемого ею, перестают быть одинаковыми. Питание же струи происходит в равной степени из обеих областей. Падение давления в меньшем по объему пространстве приводит к тому, что струя прижимается к ближайшей стенке. Кроме того, наличие в плоской модели независимых друг от друга вихревых систем в отличие от пространственной модели, где в аналогичных условиях расположения приточного отверстия вихревая система замкнута на себя, создаются условия для отклонения струи от прямолинейного направления.

Описываемое явление с неустойчивым направлением перетекания, заключающееся в переменной траектории струи, вытекающей из отверстия А, и в отклонении струи к одной из боковых стенок, и составляет специфическую особенность плоской модели. В пространственной модели оно не наблюдается; здесь условия питания струи имеют иной характер.

На рис. 2 изображено то крайнее неустойчивое направление потока, которое он имеет при перетекании от приточного отверстия, расположенного справа, к вытяжному (на всех снимках приток поступает справа). Струя по выходе из отверстия увлекает с собой значительные массы окружающего воздуха за счет турбулентного перемешивания, а так как через вытяжное отверстие удаляется только объем притока, то остальная масса образует циркуляционные потоки. Эти потоки у вытяжного отверстия растекаются симметрично вверх и вниз; далее они текут вдоль стенок, огибают углы, давая начало небольшим вихреобразованиям в них, и затем стелятся вдоль нижней и верхней стенок моделей. Немного далее середины модели они отделяются от стенок и направляются к основной струе, в то время как углы на стороне приточного отверстия (вверху и внизу), а также области между основной и циркуляционными струями заполнены вихрями. Как указано ранее, такое направление перетеканий неустойчиво и может перейти в устойчивое, изображенное на рис. 3, на котором видно, что приточная струя воздуха отклонилась к нижней стенке модели.

Рисунок 2.

Приточная струя почти по прямой перетекает к вытяжному отверстию. Такое направление перетеканий в плоской модели крайне неустойчиво

На рис. 4 изображены потоки при расположении приточного отверстия в середине, а вытяжного – внизу модели. Направление течений устойчиво и имеет общий характер с картиной потоков, изображенных на рис. 3.

Рисунок 3.

Устойчивое направление перетеканий в плоской модели. Струя отклонилась к нижней стенке. Могло быть отклонение к верхней

На рис. 5 приточное и вытяжное отверстия расположены внизу. Картина аналогична верхней половине рис. 2. Верхняя и нижняя части рис. 2 симметричны относительно оси, проходящей через приточное и вытяжное отверстия. Верхняя половина рис. 2 может служить моделью для случая, аналогичного рис. 5, но с уменьшенной вдвое боковой стороной.

Рисунок 4.

Картина течений в основном остается такой же, как на рис. 3, несмотря на перемещение вытяжного отверстия

На рис. 6, 7 и 8 приводятся фотоснимки при других комбинациях расположений приточных и вытяжных отверстий. Сопоставляя эти рисунки и предыдущие, можно заметить, что изменение расположения вытяжного отверстия мало сказывается на общем характере движения потоков.

Таким образом, из рассмотрения этой серии снимков с несомненностью вытекает, что общее движение потоков в основном определяет расположение приточного отверстия. При любом расположении притока и вытяжки образуются застойные, медленно размывающиеся области. Таких областей несколько, в одних из них обмен происходит медленнее, в других быстрее. Наличие таких областей создает неоднородность различных полей.

На рис. 9 изображена картина течений при притоке через одно и вытяжке через два отверстия. Картина аналогична рис. 2. Некоторое отклонение основной струи обусловливается бóльшим расходом через верхнее вытяжное отверстие.

Рисунок 5.

Устойчивое течение

На рис. 10 и 10а показано перетекание струи при двух приточных отверстиях на одной стороне по краям модели и вытяжном – на противоположной стенке посредине. Основные потоки у вытяжного отверстия сталкиваются и растекаются; при этом образуется новая струя, движущаяся в обратном направлении. Между этой струей и основными струями возникают две небольшие вытянутые вихревые зоны.

Рисунок 6.

Устойчивое течение при расположении притока внизу, а вытяжки посредине модели. Характер потоков в основном сохраняется тот же, что и на рис. 5

На рис. 11 мы видим вытяжку, устроенную у края модели. Здесь также образуется новая струя, но движется она примерно по диагонали от вытяжного отверстия.

Рисунок 7.

Устойчивое направление перетеканий

На рис. 12 и 13 приведены фотоснимки задымленных потоков воздуха. Снимки сделаны в плоском воздушном канале при расположении приточного отверстия внизу модели, а вытяжного вверху. Переходя к описанию явлений в пространственной модели, рассмотрим тот случай, когда приточное и вытяжное отверстия расположены внизу модели посредине в противоположных стенках. Приточная струя воздуха, выходя из отверстия, стелется по нижней стенке. Дойдя до стенки с вытяжным отверстием, струя растекается по ней в радиальных направлениях. Часть ее, равная количеству воздуха, поступившему в приточное отверстие, удаляется через вытяжное отверстие. Центр растечения расположен примерно на аэродинамической оси основного потока.

Рисунок 8.

Приточное отверстие расположено внизу модели, вытяжное вверху. Снимок показывает, что непосредственное перетекание из приточного отверстия в вытяжное по кратчайшему расстоянию не имеет места

Рисунок 9.

Циркуляция потоков при одном приточном отверстии и двух вытяжных

Радиальные потоки у верхней плоскости двух боковых и частично у нижней стенки поворачивают на 90°, движутся по стенкам по направлению к основной струе и вовлекаются ею в общий поток.

Во всех двугранных углах, образованных стенками с приточным и вытяжным отверстиями, возникают вихри. В трехгранных углах эти вихри сливаются, и в вершине угла образуется утолщенный вихрь эллипсовидной формы.

Между циркуляционными потоками и основной струей образуется пространство, заполненное вихрями. Это пространство имеет форму полукольца и опирается своими концами на стенку, по которой течет основной поток. Смена воздуха в этом полукольце в пространственной модели происходит более интенсивно, чем на плоской модели.

Рисунок 10.

Рисунок сделан от руки по плоской воздушной модели

Рисунок 10a.

Рисунок сфотографирован в гидролотке, геометрические размеры которого в 2 раза меньше воздушной модели

Еcли сделать сечение, проходящее через ось приточного и вытяжного отверстий, параллельно нижней плоскости камеры, то схема движения в этом сечении примет вид, подобный движению на плоской модели с расположением приточного и вытяжного отверстий посредине камеры (рис. 2). Разница будет заключаться лишь в том, что направление потоков в пространственной модели будет устойчивым, чего, как описывалось ранее, на плоской модели не наблюдается.

Если эту плоскость повернуть около оси на 90°, поставив ее параллельно боковым стенкам, то схема движения потоков будет аналогична движению их на плоской модели с расположением приточного и вытяжного отверстий на одной оси у низа модели (рис. 5).

Чтобы составить примерное представление об общей картине потоков в пространственной модели, следует плоскость с изображением потоков начать вращать; тогда непрерывный след, описываемый, например, некоторым участком вихревой области (рис. 14), даст в пространстве полукольцо и т. д. Таким путем может быть воссоздана примерная картина движения потоков в пространственной модели.

Рисунок 11.

Циркуляция потоков в модели при двух приточных отверстиях (справа) и одном вытяжном (слева)

Переместим теперь вытяжное отверстие вверх на середину стенки на пересечение ее диагоналей. Приточное отверстие оставим на старом месте, т. е. посредине у низа камеры. Общий характер потоков в модели сохранится таким же, как и в предыдущем случае. Перемещение вытяжного отверстия дальше вверх по той же стенке, а также по верхней стенке или, наконец, при расположении его в одной стенке с приточным не меняет общего характера потоков в модели, если не учитывать той незначительной области, которая образуется в непосредственной близости у всасывающего отверстия.

Рисунок 12.

Фотоснимок с плоской модели. Начальный момент задымления воздушного потока

Таким образом, общий характер потоков в основном определяется расположением приточного отверстия. Расположим приточное отверстие посредине стенки на пересечении диагоналей ее – вытяжное на противоположной. Чтобы составить представление о потоках в модели в этом случае, достаточно взять рис. 2 и вращать его около оси (на 180°), проходящей через середины отверстий. Любое сечение плоскостью, проходящей через отверстия, будет достаточно иллюстрироваться рис. 2. Таким образом, здесь след, оставляемый вихревой областью, даст в пространстве кольцо, охватывающее основную струю, как это схематически показано на рис. 15. Перемещение вытяжного отверстия на любую стенку и в этом случае не сказывается на схеме движения потоков.

Рисунок 13.

Поток задымленного воздуха в более поздний момент (см. рис. 12)

Если поместить приточное отверстие в углу модели (ось отверстия параллельно стенкам), а вытяжку в любом месте, то основная струя движется по двугранному углу. На противоположной стенке она радиально растекается по ней и затем поворачивает на 90°, направляясь к основной струе.

В любом сечении плоскостью, проходящей через ось приточного отверстия, наблюдается примерно та же картина, что и на плоской модели при расположении приточного отверстия внизу. Вихревая область в этом случае будет опираться в нижнюю и боковую стенки и примет вид четверти кольца.

Данный прием построения картины потоков в пространственной модели с одним приточным отверстием на основе снимков в плоской модели не восстанавливает полностью действительной картины течения потоков во всех деталях, но дает приближенную схему движения, которая во многих случаях будет полезна при решении тех или иных вентиляционных задач.

Рисунок 14.

Непрерывный след в пространстве, образуемый от вращения картины потоков плоской модели (плоскость F) вокруг оси О-О, дает примерную картину потоков в пространственной модели. Жирными линиями на рисунке показано построение центральной части вихревой области таким способом

Рисунок 15.

Схема центральной части вихревой области в виде кольца в пространственной модели при расположении притока посредине модели

Приведенный материал ни в какой степени не претендует на то, чтобы дать исчерпывающий ответ на вопрос о циркуляции воздуха в производственных помещениях, вызванной тем или иным размещением приточных и вытяжных отверстий. В конкретной, особенно производственной обстановке, общая картина потоков неизмеримо сложнее, чем это наблюдалось при крайне упрощенных условиях на наших моделях. К тому же условия, в которых это там происходит, далеки от изотермических, что само по себе дает начало циркуляционным потокам с образованием неоднородных полей. Кроме того, струи, взаимодействуя с препятствиями, не только настилаются, но и дают срывы с дополнительными образованиями плохо проветриваемых зон, заполненных вихрями. Все это неизбежно влияет на общую картину циркуляционных потоков. Даже одна или две приточных струи в изотермических условиях создают достаточно сложную картину потоков как в плоской, так и в пространственной модели в особенности. Проведенные эксперименты показали, что установление общей картины потоков в основном обусловливается тем или иным расположением приточных отверстий.

Бесспорным остается то положение, что вытяжное отверстие практически не влияет на общий характер циркуляции потоков, а потому совершенно неправильно думать, что все потоки по выходе из приточного отверстия непосредственно направляются к вытяжному. Вытяжка удаляет лишь количество поступившего в помещение воздуха, но к последнему по пути к ней присоединяется воздух из помещения, и эта присоединившаяся масса течет не к вытяжному отверстию, а возвращается к приточной струе, чтобы питать ее, совершая своего рода циркуляцию.

Понятно, что для реальных условий из этого не следует делать тот вывод, что вытяжка может быть расположена где угодно. Реальные условия дают дополнительные указания к решению этого вопроса – вытяжку следует располагать в зонах наибольшей концентрации; если она вследствие наличия тепловых источников находится вверху, то вверху и должна производиться общая вытяжка и т. д.

Полученный в результате исследований материал этому не противоречит, так как он констатирует лишь, что в установлении общей картины потоков место расположения вытяжки не играет существенной роли.

Приведенный материал дает также ключ к пониманию картины потоков в замкнутом пространстве (на основе плоскостных снимков, которые при известном навыке могут быть нарисованы по интуиции, что существенно важно, так как картина потоков является достаточно сложной).

Достаточно вспомнить, какую пеструю картину концентрации (в широком смысле) дают замеры, производимые в реальной обстановке, на первый взгляд совершенно непонятные и необъяснимые, если не учитывать циркуляционных потоков.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *